Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:00:51.010Z Has data issue: false hasContentIssue false

Numerical study of radiative opacity for carbon and aluminum plasmas produced by high power pulsed lasers

Published online by Cambridge University Press:  09 May 2013

Mohammad Hossein Mahdieh*
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
Sahar Hosseinzadeh
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
*
Address correspondence and reprint requests to: Mohammad Hossein Mahdieh, Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran. E-mail: mahdm@iust.ac.ir

Abstract

In this paper, the opacity of plasma in local thermodynamic equilibrium condition was investigated numerically. The plasma was assumed to be produced by interaction of high power pulse laser with carbon and aluminum. Spectrally resolved opacities under different plasma temperature and density conditions were calculated and radiative absorption due to three absorption mechanisms; inverse bremsstrahlung, photo-ionization, and line absorption in plasmas was studied numerically. The purpose of this study is to calculate the values of absorption for inverse bremsstrahlung and photo-ionization processes for aluminum and carbon plasmas and to compare them for those of cold matter. In this investigation, the influences of density and temperature on plasma absorption were evaluated. The calculation results show that the opacity strength strongly depends on the plasma temperature and density.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J. Jr. & Clark, R.E.H. (1991). X-ray transmission calculations for an aluminum plasma. J. Appl. Phys. 69, 23.CrossRefGoogle Scholar
André, M., Babonneau, D., Bayer, C., Bernard, M., Bocher, J-L., Bruneau, J., Coudeville, A., Coutant, J., Dautray, R., Decoster, A., Decroisette, M., Desenne, D., Dufour, J-M., Garçonnet, J-P., Holstein, P-A., Jadaud, J-P., Jolas, A., Juraszek, D., Lachkar, J., Lascaux, P., Le Breton, J-P., Louis-Jacquet, M., Meyer, B., Mucchielli, F., Rousseaux, C., Schirmann, D., Schurtz, G., Véron, D. & Watteau, J-P. (1994). Progress in inertial confinement fusion physics at Centre d'Etudes de Limeil-Valenton. Laser Part. Beams 12, 329342.CrossRefGoogle Scholar
Babonneaua, D., Bochera, J.L., Bayera, C., Decostera, A., Juraszeka, D., Perrinea, J.P. & Thiell, G. (1991). X-ray emission by the rear side of laser-irradiated gold targets, Laser Part. Beams 9, 527540.CrossRefGoogle Scholar
Bailey, J.E., Rochau, G.A., Mancini, R.C., Iglesias, C.A., Mac Farlane, J.J., Golovkin, I.E., Blancard, C., Cosse, Ph, & Faussurier, G. (2009). Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas, Phys. Plasmas 16, 116.CrossRefGoogle Scholar
Bar-Shalom, A., Oreg, J., Goldstein, W.H., Shvarts, D. & Zigler, A. (1989). Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A 40, 3183.CrossRefGoogle Scholar
Bastiani, S., Giulietti, D., Giulietti, A., Gizzi, L.A., Ceccotti, T. & Macchi, A. (1995). A study of laser plasmas as X-ray sources in the 1-10 keV spectral region. Laser Part. Beams 13, 493501.CrossRefGoogle Scholar
Bauche, J. & Bauche-Arnoult, C. (1996). Recent progress in the global description of atomic transitions. Phys. Scr. 99, 113.Google Scholar
Bauche-Arnoult, C., Bauche, J. & Klapisch, M. (1978). Mean wavelength and spectral width of transition arrays in x-uv atomic spectra. J. Opt. Soc. Am. 68, 1136.CrossRefGoogle Scholar
Colgan, J., Fontesb, C.J. & Abdallah, J. Jr. (2006). Collisional-radiative studies of carbon plasmas. Hi. Ener. Density Phys. 2, 9096.CrossRefGoogle Scholar
Cowan, R.D. (1981). Theory of Atomic Spectra. Berkeley: University of California Press,CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Philadelphia: IOP Publishing.CrossRefGoogle Scholar
Faussurier, G., Wilson, B.G. & Chen, M.H. (2001). Generalization of super-transition-array methods to hot dense plasmas by using optimum independent particle reference systems. Phys. Rev. E 65, 016403/1–5.CrossRefGoogle ScholarPubMed
Gauthier, J.C., Amiranoff, F., Chenais-popovics, C., Jamelot, G., Koenig, M., Labaune, C., Leboucher-Dalimier, E., Sauteret, C. & Migus, A. (1999). LULI activities in the field of high-power laser–matter interaction. Laser Part. Beams 17, 195208.CrossRefGoogle Scholar
Gil, J.M., Rodriguez, R., Martel, P., Florido, R., Rubiano, J.G., Mendoza, M.A. & Minguez, E. (2013). Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature. J. Quant. Spectrosc. & Rad.e Trans. 114, 136150.CrossRefGoogle Scholar
Godwal, B.K., Sikka, S.K. & Kaushik, T.C. (1997). Equation of state in laser shock simulations. Laser Part. Beams 15, 353365.CrossRefGoogle Scholar
Green, J.M. (1964). The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom. J. Quant. Spectrosc. Radiat. Trans. 4, 639.CrossRefGoogle Scholar
Gupta, N.K. & Godwal, B.K. (2001). Effects of various parameters on numerical simulations of inertial confinement fusion hohlraum and radiation hydrodynamics. Laser Part. Beams 19, 259265.CrossRefGoogle Scholar
Gupta, N.K. & Godwal, B.K. (2002). Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas. Pramana J. Phys. 59, 3351.CrossRefGoogle Scholar
Gupta, N.K. & Kumar, V. (1995). Angular dependence of M and N band radiation and the effect of angular anisotropy on the total conversion efficiency of X rays emitted from a laser irradiated gold foil. Laser Part. Beams 13, 389402.CrossRefGoogle Scholar
Heading, D.J., Wark, J.S., Bennett, G.R. & Lee, R.W. (1995). Simulations of spectra from dense aluminum plasmas. J. Quant. Spectros. Rad. Trans. 54, 167180.CrossRefGoogle Scholar
Hutchinson, Ian H. (2002). Principles of Plasma Diagnostics. New York: Cambridge University Press.CrossRefGoogle Scholar
Iglesias, C.A. & Rogers, F.J. (1996). Update OPAL opacities. Astrophys. J. 464, 943.CrossRefGoogle Scholar
Iglesias, C.A., Nash, J.K., Chen, M.H. & Rogers, F.J. (1994). Estimating plasma temperatures from transmission spectra, J. Quant. Spectrosc. Radiat. Trans. 51, 125.CrossRefGoogle Scholar
Jiao-Long, Z., Feng-Tao, J., Gang, J. & Jian-Min, Y. (2003). Temperature diagnostics for iron plasmas by means of transmission spectrum obtained by accurate atomic data, Chin. Phys. Lett. 20, 862864.CrossRefGoogle Scholar
Jin, F., Zeng, J. & Yuan, J. (2008). Detailed diagnostics of a laser produced aluminum plasma by the Kalpha satellites. J. Quant. Spectrosc. Radiat. Trans. 109, 27072714.CrossRefGoogle Scholar
Kauffman, R.L., Suter, L.J., Darrow, C.B., Kilkenny, J.D., Kornblum, H.N., Montgomery, D.S., Phillion, D.W., Rosen, M.D., Theissen, A.R., Wallace, R.J. & Ze, F. (1994). High temperatures in inertial confinement fusion radiation cavities heated with 0.35 µm light. Phys. Rev. Lett. 73, 23202323.CrossRefGoogle Scholar
Magee, N.H., Abdallah, J., Clark, R.E.H., Cohen, J.S., Collins, L.A. & Csanak, G. (1995). Atomic structure calculations and new Los Alamos astrophysical opacities. Astronomical Society of the Pacific Conference Series 78, 5155.Google Scholar
Mahdieh, M.H. & Hosseinzadeh, S. (2010). Calculation of the radiative opacity for some low Z plasmas produced by high power pulsed lasers. SPIE 7751, xxx.Google Scholar
Martin, W.C. & Zalubas, R. (1979). Energy levels of aluminum, Al I through Al XIII. J. Phys. Chem. Ref. Data 8, 817.CrossRefGoogle Scholar
Martin, W.C., Fuhr, J.R., Kelleher, D.E., Musgrove, A., Sugar, J., Wiese, W.L., Mohr, P.J. & Olsen, K. (2006). NIST Atomic Spectra Database Version 2.0. Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
Marzi, S., Giulietti, A., Giulietti, D., Gizzi, L.A. & Salvetti, A. (2000). A high brightness laser-plasma X-ray source at IFAM: characterization and applications. Laser Part. Beams 18, 109118.CrossRefGoogle Scholar
Meister, C.-V., Imran, M. & Hoffmann, D.H.H. (2011). Relative energy level shifts of hydrogen-like carbon bound-states in dense matter. Laser Part. Beams 29, 1727.CrossRefGoogle Scholar
Moore, C.E. (1970). Ionization potentials and ionization limits derived from the analysis of optical spectra. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U.S.) 34, 22.Google Scholar
Nishimura, H., Endo, T., Shiraga, H., Kato, Y. & Nakai, S. (1993). X-ray emission from high-Z mixture plasmas generated with intense blue laser light, Appl. Phys. Lett. 62, 13441346.CrossRefGoogle Scholar
Orlov, N.Yu., Denisov, O.B., Rosmej, O.N., Schäfer, D., Nisius, Th., Wilhein, Th., Zhidkov, N., Kunin, A., Suslov, N., Pinegin, A., Vatulin, V. & Zhao, Y. (2011). Theoretical and experimental studies of material radiative properties and their applications to laser and heavy ion inertial fusion. Laser Part. Beams 29, 6980.CrossRefGoogle Scholar
Orlov, N.Yu., Guskov, S.Yu., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415423.CrossRefGoogle Scholar
Orzechowski, T.J., Rosen, M.D., Kornblum, H.N., Porter, J.L. & Suter, L.J. (1996). The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures, Phys. Rev. Lett. 77, 35453548.CrossRefGoogle ScholarPubMed
Ramis, R., Meyer-ter-Vehn, J. & Ramírez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Compu. Phys. Commun. 180, 977994.CrossRefGoogle Scholar
Rickert, A. & Meyer-Ter-Vehn, J. (1990). Frequency-dependent opacity calculations for high-Z plasma including l splitting. Laser Part. Beams 8, 715727.CrossRefGoogle Scholar
Rodriguez, R., Florido, R, Gil, J.M., Rubiano, J.G., Martel, P., Mendoza, M.A., Suárez, D. & Mínguez, E. (2008). Detailed-level-accounting approach calculation of radiative properties of aluminum plasmas in a wide range of density and temperature, J. Phys.: Confer. Ser. 112, 14.Google Scholar
Rodriguez, R., Florido, R., Gil, J.M., Rubiano, J.G., Martel, P. & Minguez, E. (2008). RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature. Laser Part. Beams 26, 433448.CrossRefGoogle Scholar
Rogers, F.J. & Iglesias, C.A. (1992). Radiative atomic Rosseland mean opacity tables. Astrophys. J. Supp. 79, 507568.CrossRefGoogle Scholar
Rogers, F.J. & Iglesias, C.A. (1994). Astrophysical opacity. Sci. 263, 5055.CrossRefGoogle ScholarPubMed
Rose, S.J. (1992). Calculations of the radiative opacity of laser-produced plasmas. J. Phys. B: At. Mol. Opt. Phys. 25, 16671681.CrossRefGoogle Scholar
Rose, S.J. (1991). High power laser produced plasma and astrophysics. Laser Part. Beams 9, 869879.CrossRefGoogle Scholar
Rossall, A.K., Gartside, L.M.R., Chaurasia, S., Tripathi, S., Munda, D.S., Gupta, N.K., Dhareshwar, L.J., Gaffney, J., Rose, S.J. & Tallents, G.J. (2010). X-ray back-lighter characterization for iron opacity measurements using laser-produced aluminum K-alpha emission. J. Phys. B: At. Mol. Opt. Phys. 43, 155403.CrossRefGoogle Scholar
Rozsnyai, B.F. (1997). Collisional-radiative average-atom model for hot plasmas. Phys. Rev. E 55, 75077521.CrossRefGoogle Scholar
Rozsnyai, B.F. (2010). Hot plasma opacities in the presence or absence of local thermodynamic equilibrium. Hi. Ener. Density Phys. 6, 345355.CrossRefGoogle Scholar
Seltzer, S.M. (1993). Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Rad. Res. 136, 147170.CrossRefGoogle ScholarPubMed
Verner, D.A., Ferland, G.J., Korista, K.T. & Yakovlev, D.G. (1996). Atomic data for astrophysics. II. New analytic fits for photo-ionization cross sections of atoms and ions. Astrophys. J. 465, 487498.CrossRefGoogle Scholar
Winhart, G., Eidmann, K., Iglesias, C.A. & Bar-Shalom, A. (1996). Measurements of extreme UV opacities in hot dense Al, Fe, and Ho. Phys. Rev. 53, R1332R1335.Google ScholarPubMed
Yongqiang, L., Jianhua, W., Yong, H. & Jianmin, Y. (2009), Radiative opacities of hot and solid-dense aluminum plasmas using a detailed level accounting model. J. Phys. B: At. Mol. Opt. Phys. 42, 111.Google Scholar
Zastrau, U., Burian, T., Chalupsky, J., Döppner, T., Dzelzainis, T.W.J., Fäustlin, R.R., Fortmann, C., Galtier, E., Glenzer, S.H., Gregori, G., Juha, L., Lee, H.J., Lee, R.W., Lewis, C.L.S., Medvedev, N., Nagler, B., Nelson, A.J., Riley, D., Rosmej, F.B., Toleikis, S., Tschentscher, T., Uschmann, I., Vinko, S.M., Wark, J.S., Whitcher, T. & Förster, E. (2012). XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams 30, 4556.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). Physics of shock waves and High-Temperature Hydrodynamics Phenomena. New York: Academic.Google Scholar
Zeng, J.L., Jin, F.T., Yuan, J.M., Lu, Q.S. & Sun, Y.S. (2000). Detailed-term-accounting-approximation simulation of x-ray transmission through laser-produced Al plasmas. Phys. Rev. E 62, 7251.CrossRefGoogle ScholarPubMed
Zeng, J., Jin, F. & Yuan, J. (2006). Radiative opacity of plasmas studied by detailed term (level) accounting approaches. Frontiers Phys. China 1, 468489.CrossRefGoogle Scholar
Zeng, J., Yuan, J. & Lu, Q. (2001). Detailed-term-accounting-approximation calculations of the radiative opacity of laser-produced Al plasmas. Phys. Rev. E 64, 066412/1–9.CrossRefGoogle ScholarPubMed
Zhang, J., Key, M.H., Norreys, P.A., Danson, C., Neely, D., Rose, S.J., Walsh, F., Tallents, G.J., Dwivedi, L., Holden, M., Holden, P.B., Pert, G.J., Ramsden, S.A., Lewis, C.L.S., Macphee, A.G. & You, Y.L. (1996). Characteristics of rapidly recombining plasmas suitable for high-gain X-ray laser action. Laser Part. Beams 14, 7179.CrossRefGoogle Scholar