Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T03:35:19.229Z Has data issue: false hasContentIssue false

Numerical modelling of the cluster targets for their optimization in femtosecond-laser-cluster-driven experiments

Published online by Cambridge University Press:  21 June 2017

A.S. Boldarev*
Affiliation:
Keldysh Institute of Applied Mathematics RAS, Moscow, Russia National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
A.Y. Faenov
Affiliation:
Open and Transdisiplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan Joint Institute for High Temperatures, Russian Academy of Science, Moscow, 125412, Russia
Y. Fukuda
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto, Japan
S. Jinno
Affiliation:
Nuclear Professional School, The University of Tokyo, 2-22 Shirakata Shirane, Tokai, Naka, Ibaraki 319-1188, Japan
T.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science, Moscow, 125412, Russia Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
M. Kando
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto, Japan
K. Kondo
Affiliation:
Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto, Japan
R. Kodama
Affiliation:
Open and Transdisiplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan Photon Pioneers center, Osaka University, Suita, Osaka 565-0871, Japan Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
*
Address correspondence and reprint request to: A.S. Boldarev, Keldysh Institute of Applied Mathematics RAS, Miusskaya sq. 4, Moscow, 125047, Russian Federation. E-mail: boldar@imamod.ru

Abstract

The interaction of femtosecond ultra-intense laser pulses with clusters increases absorption of the incident laser light compared with the interaction with solid targets and leads to enhanced generation of different quantum beams with unique parameters. Future investigations of such interaction urgently need detailed modeling and optimization of cluster parameters, for instance, in order to obtain the clusters with desired size, or some specific spatial configuration of the target etc. A numerical model of gas-cluster targets production by the nozzle flows of gases and binary mixtures is presented. Some previous results of the model utilization are summarized, and some new results are given. Techniques of experimental verification of the numerical results are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J. Jr., Csanak, G., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2003). Time-dependent Boltzmann kinetic model of x-rays produced by ultrashort-pulse laser irradiation of argon clusters. Phys. Rev. A 68, 063201.Google Scholar
Abdallah, J. Jr., Faenov, A.Y., Skobelev, I.Y., Magunov, A.I., Pikuz, T.A., Auguste, T., D'Oliveira, P., Hulin, S. & Monot, P. (2001). Hot-electron influence on the x-ray emission spectra of Ar clusters heated by a high-intensity 60-fs laser pulse. Phys. Rev. A 63, 032706.Google Scholar
Abraham, F.F. (1974). Homogeneous Nucleation Theory. New York: Academic.Google Scholar
Berkelbach, T.C., Colgan, J., Abdallah, J. Jr., Faenov, A.Y., Pikuz, T.A., Fukuda, Y. & Yamakawa, K. (2009). Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters. Phys. Rev. E 79, 016407.CrossRefGoogle ScholarPubMed
Blasco, F., Stenz, C., Salin, F., Faenov, A.Y., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2001). Portable, tunable, high-luminosity spherical crystal spectrometer with an x-ray charge coupled device, for high-resolution x-ray spectromicroscopy of clusters heated by femtosecond laser pulses. Rev. Sci. Instrum. 72, 1956.CrossRefGoogle Scholar
Boldarev, A.S., Gasilov, V.A., Blasco, F., Stenz, C., Dorchies, F., Salin, F., Faenov, A.Y., Pikuz, T.A., Magunov, A.I. & Skobelev, I.Y. (2001). Modeling cluster jets as targets for high-power ultrashort laser pulses. JETP Lett. 73, 514518.Google Scholar
Boldarev, A.S., Gasilov, V.A. & Faenov, A.Y. (2004). On the generation of large clusters in forming gas-jet targets for lasers. Tech. Phys. 49, 388395.Google Scholar
Boldarev, A.S., Gasilov, V.A., Faenov, A.Y., Fukuda, Y. & Yamakawa, K. (2006). Gas-cluster targets for femtosecond laser interaction: Modeling and optimization. Rev. Sci. Instrum. 77, 083112.Google Scholar
Bussolino, G.C., Faenov, A., Giulietti, A., Giulietti, D., Koester, P., Labate, L., Levato, T., Pikuz, T. & Gizzi, L.A. (2013). Electron radiography using a table-top laser-cluster plasma accelerator. J. Phys. D: Appl. Phys. 46, 245501.Google Scholar
Chen, L.M., Yan, W.C., Li, D.Z., Hu, Z.D., Zhang, L., Wang, W.M., Hafz, N., Mao, J.Y., Huang, K., Ma, Y., Zhao, J.R., Ma, J.L., Li, Y.T., Lu, X., Sheng, Z.M., Wei, Z.Y., Gao, J. & Zhang, J. (2013). Bright betatron X-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 3, 1912.Google Scholar
Colgan, J., Abdallah, J. Jr., Faenov, A.Y., Pikuz, T.A., Skobelev, I.Y., Fortov, V.E., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N. & Yamakawa, K. (2008). The role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target. Laser Part. Beams 26, 8394.Google Scholar
Colgan, J., Abdallah, J. Jr., Faenov, A.Y., Pikuz, T.A., Skobelev, I.Yu., Fukuda, Y., Hayashi, Y., Pirozhkov, A., Kawase, K., Shimomura, T., Kiriyama, H., Kato, Y., Bulanov, S.V. & Kando, M. (2011). Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Phys. 7, 7783.Google Scholar
Davis, J., Petrov, J.M. & Velikovich, A. (2007). Nonlinear energy absorption of rare gas clusters in intense laser field. Phys. Plasmas 14, 060701.Google Scholar
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 3379.Google Scholar
Ditmire, T., Gumbrell, E.T., Smith, R.A., Djaoui, A. & Hutchinson, M.H.R. (1998). Time-resolved study of nonlocal electron heat transport in high temperature plasmas. Phys. Rev. Lett. 80, 720.Google Scholar
Ditmire, T., Tisch, J.W.G., Springate, E., Mason, M.B., Hay, N., Marangos, J.P. & Hutchinson, M.H.R. (1997). High energy ion explosion of atomic clusters: Transition from molecular to plasma behavior. Phys. Rev. Lett. 78, 2732.CrossRefGoogle Scholar
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489492.CrossRefGoogle Scholar
Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Ellert, K., Blenski, T., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y. & Andreev, N.E. (1999). Observation of ions with energies above 100 keV produced by the interaction of a 60-fs laser pulse with clusters. JETP 88, 11221129.Google Scholar
Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y. & Andreev, N.E. (1998). Characteristic features of the x-ray spectra of a plasma produced by heating CO2 clusters by intense femtosecond laser pulses with λ=0.8 and 0.4 μm. JETP Lett. 68, 485491.Google Scholar
Dorchies, F., Blasco, F., Caillaud, T., Stevefelt, J., Stenz, C., Boldarev, A.S. & Gasilov, V.A. (2003). Spatial distribution of cluster size and density in supersonic jets as targets for intense laser pulses. Phys. Rev. A 68, 023201.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Giulietti, D., Betti, S., Galimberti, M., Gamucci, A., Giulietti, A., Gizzi, L.A., Labate, L., Levato, T., Tomassini, P., Marques, J.R., Bourgeois, N., Dobosz-Dufrenoy, S., Ceccoti, T., Monot, P., Reau, F., Popoescu, H., D'Oliveira, P., Martin, P., Fukuda, Y., Boldarev, A.S., Gasilov, S.V. & Gasilov, V.A. (2008). Non-adiabatic cluster expansion after ultrashort laser interaction. Laser Part. Beams 26, 6982.CrossRefGoogle Scholar
Faenov, A.Y., Oks, E., Dalimier, E., Skobelev, I.Y., Pikuz, S.A., Pikuz, T.A., Zhvaniya, I.A., Fukuda, Y., Andreev, A., Koga, J., Sakaki, H., Kotaki, H., Pirozhkov, A.S., Hayashi, Y., Kawachi, T., Kando, M., Kondo, K., Zhidkov, A.G. & Kodama, R. (2016 a). X-ray spectral diagnostics of laser harmonic generation in the interaction of relativistic femtosecond laser pulses with clusters. Quant. Electron. 46, 338341.Google Scholar
Faenov, A.Y., Pikuz, T.A., Fukuda, Y., Kando, M., Kotaki, H., Homma, T., Kawase, K., Kameshima, T., Pirozhkov, A., Yogo, A., Tampo, M., Mori, M., Sakaki, H., Hayashi, Y., Nakamura, T., Pikuz, S.A. Jr., Skobelev, I.Y., Gasilov, S.V., Giulietti, A., Cecchetti, C.A., Boldarev, A.S., Gasilov, V.A., Magunov, A., Kar, S., Borghesi, M., Bolton, P., Daido, H., Tajima, T., Kato, Y. & Bulanov, S.V. (2009). Submicron ionography of nanostructures using a femtosecond-laser-driven-cluster-based source. Appl. Phys. Lett. 95, 101107.Google Scholar
Faenov, A.Y., Pikuz, T.A., Fukuda, Y., Skobelev, I.Y., Nakamura, T., Bulanov, S.V., Hayashi, Y., Kotaki, H., Pirozhkov, A.S., Kawachi, T., Chen, L.M., Zhang, L., Yan, W.C., Yuan, D.W., Mao, J.Y., Wang, Z.H., Fortov, V.E., Kato, Y. & Kando, M. (2013). Generation of quantum beams in large clusters irradiated by super-intense, high–contrast femtosecond laser pulses. Contrib. Plasma Phys. 53, 148160.Google Scholar
Faenov, A.Y., Pikuz, T.A. & Kodama, R. (2016 b). Laser-driven particle acceleration towards radiobiology and medicine. In High Resolution Ion and Electron Beam Radiography with Laser-Driven Clustered Sources (Giulietti, A. ed.), Chapter 12, pp. 271294. Heidelberg, New York: Springer.Google Scholar
Faenov, A.Y., Skobelev, I.Y., Magunov, A.I., Pikuz, T.A., Abdallah, J. Jr., Junkel-Vives, G.C., Blasco, F., Dorchies, F., Stenz, C., Salin, F., Auguste, T., Dobosz, S., Monot, P., D'Oliveira, P., Hulin, S., Boldarev, A. & Gasilov, V.A. (2001). X-ray radiation properties of clusters heated by fs laser pulses. Proc. SPIE 4504, 121132.Google Scholar
Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Pikuz, S.A., Fortov, V.E., Fukuda, Y., Hayashi, Y., Pirozhkov, A., Kotaki, H., Shimomura, T., Kiriyama, H., Kanazawa, S., Kato, Y., Colgan, J., Abdallah, J. & Kando, M. (2012). X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultra-intense femtosecond laser pulse irradiation. Laser Part. Beams 30, 481488.Google Scholar
Frenkel, Y.I. (1955). Kinetic Theory of Liquids. New York: Dover publications, Inc.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J. Jr., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004 a). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Nakai, Y., Tsuji, K., Yamanaka, K., Hironaka, Y., Kishimura, H., Morishita, H., Kondo, K. & Nakamura, K.G. (2004 b). Relativistic laser plasma from micron-sized argon clusters as a debris-free x-ray source for pulse x-ray diffraction. Appl. Phys. Lett. 85, 50995101.Google Scholar
Fukuda, Y., Faenov, A.Y., Pikuz, T., Kando, M., Kotaki, H., Daito, I., Ma, J., Chen, L.M., Homma, T., Kawase, K., Kameshima, T., Kawachi, T., Daido, H., Kimura, T., Tajima, T., Kato, Y. & Bulanov, S.V. (2008). Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 92, 121110.Google Scholar
Fukuda, Y., Faenov, A.Y., Tampo, M., Pikuz, T.A., Nakamura, T., Kando, M., Hayashi, Y., Yogo, A., Sakaki, H., Kameshima, T., Pirozhkov, A.S., Ogura, K., Mori, M., Esirkepov, T.Z., Koga, J., Boldarev, A.S., Gasilov, V.A., Magunov, A.I., Yamauchi, T., Kodama, R., Bolton, P.R., Kato, Y., Tajima, T., Daido, H. & Bulanov, S.V. (2009). Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002.Google Scholar
Fukuda, Y., Sakaki, H., Kanasaki, M., Yogo, A., Jinno, S., Tampo, M., Faenov, A., Pikuz, T., Hayashi, Y., Kando, M., Pirozhkov, A., Shimomura, T., Kiriyama, H., Kurashima, S., Kamiya, T., Oda, K., Yamauchi, T., Kondo, K. & Bulanov, S. (2013). Identification of high energy ions using backscattered particles in laser-driven ion acceleration with cluster-gas targets. Radiat. Meas. 50, 9296.Google Scholar
Fukuda, Y., Yamakawa, K., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Abdallah, J. Jr., Csanak, G., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Boldarev, A.S. & Gasilov, V.A. (2003). X-ray study of microdroplet plasma formation under the action of superintense laser radiation. JETP Lett. 78, 115118.Google Scholar
Gasilov, S.V., Faenov, A.Y., Pikuz, T.A., Fukuda, Y., Kando, M., Kawachi, T., Skobelev, I.Y., Daido, H., Kato, Y. & Bulanov, S.V. (2009). Wide-field-of-view phase-contrast imaging of nanostructures with a comparatively large polychromatic soft x-ray plasma source. Opt. Lett. 34, 32683270.Google Scholar
Gavrilenko, V.P., Faenov, A.Y., Magunov, A.I., Skobelev, I.Y., Pikuz, T.A., Kim, K.Y. & Milchberg, H.M. (2006). Observation of modulations in Lyman-α line profiles of multicharged ions in clusters irradiated by femtosecond laser pulses: Effect of a dynamic electric field. Phys. Rev. A 73, 013203.Google Scholar
Hagena, O.F. (1992). Cluster ion sources. Rev. Sci. Instrum. 63, 2374.Google Scholar
Hansen, S.B., Fournier, K.B., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H. & Yamakawa, K. (2005). Measurement of 2lnl′ x-ray transitions from ≈1 μm Kr clusters irradiated by high-intensity femtosecond laser pulses. Phys. Rev. E 71, 016408.Google Scholar
Hayashi, Y., Fukuda, Y., Faenov, A.Y., Kando, M., Kawase, K., Pikuz, T.A., Homma, T., Daido, H. & Bulanov, S.V. (2010). Intense and reproducible Kα emissions from micron-sized Kr cluster target irradiated with intense femtosecond laser pulses. Japanese J. Appl. Phys. 49, 126401.Google Scholar
Hayashi, Y., Pirozhkov, A.S., Kando, M., Fukuda, Y., Faenov, A., Kawase, K., Pikuz, T., Nakamura, T., Kiriyama, H., Okada, H. & Bulanov, S.V. (2011). Efficient generation of Xe K-shell x rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36, 16141616.Google Scholar
Jinno, S., Fukuda, Y., Sakaki, H., Yogo, A., Kanasaki, M., Kondo, K., Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Boldarev, A.S. & Gasilov, V.A. (2013 a). Characterization of submicron-sized CO2 clusters formed with a supersonic expansion of a mixed-gas using a three-staged nozzle. Appl. Phys. Lett. 102, 164103.Google Scholar
Jinno, S., Fukuda, Y., Sakaki, H., Yogo, A., Kanasaki, M., Kondo, K., Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Boldarev, A.S. & Gasilov, V.A. (2013 b). Mie scattering from submicron-sized CO2 clusters formed in a supersonic expansion of a gas mixture. Opt. Express 21, 2065620674.CrossRefGoogle Scholar
Junkel-Vives, G.C., Abdallah, J. Jr., Auguste, T., D'Oliveira, P., Hulin, S., Monot, P., Dobosz, S., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Boldarev, A.S. & Gasilov, V.A. (2002 a). Spatially resolved x-ray spectroscopy investigation of femtosecond laser irradiated Ar clusters. Phys. Rev. E 65, 036410.Google Scholar
Junkel-Vives, G.C., Abdallah, J. Jr., Blasco, F., Dorchies, F., Caillaud, T., Bonte, C., Stenz, C., Salin, F., Faenov, A.Y., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2002 b). Evidence of supercritical density in 45-fs-laser-irradiated Ar-cluster plasmas. Phys. Rev. A 66, 033204.Google Scholar
Kim, K.Y., Kumarappan, V. & Milchberg, H.M. (2003). Measurement of the average size and density of clusters in a gas jet. Appl. Phys. Lett. 83, 32103212.Google Scholar
Kim, K.Y., Milchberg, H., Faenov, A.Y., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2006). X-ray spectroscopy of 1 cm plasma channels produced by self-guided pulse propagation in elongated cluster jets. Phys. Rev. E 73, 066403.Google Scholar
Koester, P., Bussolino, G.C., Cristoforetti, G., Faenov, A., Giulietti, A., Giulietti, D., Labate, L., Levato, T., Pikuz, T. & Gizzi, L.A. (2015). High-charge divergent electron beam generation from high-intensity laser interaction with a gas-cluster target. Laser Part. Beams 33, 331338.Google Scholar
Kugland, N.L., Constantin, C.G., Neumayer, P., Chung, H.-K., Collette, A., Dewald, E.L., Froula, D.H., Glenzer, S.H., Kemp, A., Kritcher, A.L., Ross, J.S. & Niemann, C. (2008). High Kα x-ray conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses. Appl. Phys. Lett. 92, 241504.Google Scholar
Oks, E., Dalimier, E., Faenov, A., Pikuz, T., Fukuda, Y., Andreev, A., Koga, J., Sakaki, H., Kotaki, H., Pirozhkov, A., Hayashi, Y., Skobelev, I., Pikuz, S., Kawachi, T., Kando, M., Kondo, K., Zhidkov, A. & Kodama, R. (2015). Revealing the second harmonic generation in a femtosecond laser-driven cluster-based plasma by analyzing shapes of Ar XVII spectral lines. Opt. Express 23, 3199132005.Google Scholar
Oks, E., Dalimier, E., Faenov, A.Y., Pikuz, T., Fukuda, Y., Jinno, S., Sakaki, H., Kotaki, H., Pirozhkov, A., Hayashi, Y., Skobelev, I., Kawachi, T., Kando, M. & Kondo, K. (2014). Two-plasmon decay instability's signature in spectral lines and spectroscopic measurements of charge exchange rate in a femtosecond laser-driven cluster-based plasma. J. Phys. B: At. Mol. Opt. Phys. 47, 221001.Google Scholar
Parra, E., Alexeev, I., Fan, J., Kim, K.Y., McNaught, S.J. & Milchberg, H.M. (2000). X-ray and extreme ultraviolet emission induced by variable pulse-width irradiation of Ar and Kr clusters and droplets. Phys. Rev. E 62, R5931.Google Scholar
Parra, E., McNaught, S.J., Fan, J. & Milchberg, H.M. (2003). Pump–probe studies of EUV and X-ray emission dynamics of laser-irradiated noble gas droplets. Appl. Phys. A 77, 317323.Google Scholar
Pikuz, T.A., Faenov, A.Y., Gasilov, S.V., Skobelev, I.Y., Fukuda, Y., Kando, M., Kotaki, H., Homma, T., Kawase, K., Hayahsi, Y., Kawachi, T., Daido, H., Kato, Y. & Bulanov, S. (2009). Propagation-based phase-contrast enhancement of nanostructure images using a debris-free femtosecond-laser-driven cluster-based plasma soft x-ray source and an LiF crystal detector. Appl. Opt. 48, 62716276.Google Scholar
Rusek, M., Lagadec, H. & Blenski, T. (2000). Cluster explosion in an intense laser pulse: Thomas-Fermi model. Phys. Rev. A 63, 013203.Google Scholar
Sherrill, M.E., Abdallah, J. Jr., Csanak, G., Dodd, E.S., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2006). Spectroscopic characterization of an ultrashort-pulse-laser-driven Ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys. Rev. E 73, 066404.CrossRefGoogle ScholarPubMed
Skobelev, I.Y., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Boldarev, A.S., Gasilov, V.A., Abdallach, J. Jr., Junkel-Vives, G.C., Auguste, T., Dobosz, S., d'Oliveira, P., Hulin, S., Monot, P., Blasco, F., Dorchies, F., Caillaud, T., Bonte, C., Stenz, C., Salin, F. & Loboda, P.A., Litvinenko, I.A., Popova, V.V., Baidin, G.V. & Sharkov, B.Y. (2002 a). X-ray spectroscopy diagnostic of a plasma produced by femtosecond laser pulses irradiating a cluster target. JETP 94, 966976.Google Scholar
Skobelev, I.Y., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Boldarev, A.S., Gasilov, V.A., Abdallach, J. Jr., Junkel-Vives, G.C., Auguste, T., d'Oliveira, P., Hulin, S., Monot, P., Blasco, F., Dorchies, F., Caillaud, T., Bonte, C., Stenz, C., Salin, F. & Sharkov, B.Y. (2002 b). On the interaction of femtosecond laser pulses with cluster targets. JETP 94, 7383.Google Scholar
Sylla, F., Veltcheva, M., Kahaly, S., Flacco, A. & Malka, V. (2012). Development and characterization of very dense submillimetric gas jets for laser-plasma interaction. Rev. Sci. Instrum. 83, 033507.Google Scholar
Tajima, T., Kishimoto, Y. & Downer, M.C. (1999). Optical properties of cluster plasma. Phys. Plasmas 6, 3759.Google Scholar
Tao, Y., Hagmeijer, R., van der Weide, E.T.A., Bastiaens, H.M.J. & Boller, K.-J. (2016). Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction. Appl. Phys. 119, 164901.Google Scholar
Zhang, L., Chen, L.-M., Wang, W.-M., Yan, W.-C., Yuan, D.-W., Mao, J.-Y., Wang, Z.-H., Liu, C., Shen, Z.-W., Li, Y.-T., Dong, Q.-L., Lu, X., Ma, J.-L., Faenov, A., Pikuz, T., Sheng, Z.-M. & Zhang, J. (2012). Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100, 014104.Google Scholar
Zhang, L., Chen, L.-M., Yuan, D.-W., Yan, W.-C., Wang, Z.-H., Liu, C., Shen, Z.-W., Faenov, A., Pikuz, T., Skobelev, I., Gasilov, V., Boldarev, A., Mao, J.-Y., Li, Y.-T., Dong, Q.-L., Lu, X., Ma, J.-L., Wang, W.-M., Sheng, Z.-M. & Zhang, J. (2011). Enhanced K α output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19, 2581225822.Google Scholar