Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:15:41.807Z Has data issue: false hasContentIssue false

Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas

Published online by Cambridge University Press:  15 March 2011

Y.L. Wang*
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
C. Chen
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
X.C. Ding
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
L.Z. Chu
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
Z.C. Deng
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
W.H. Liang
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
J.Z Chen
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
G.S. Fu
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding, China
*
Address correspondence and reprint requests to: Ying-Long Wang, College of Physics Science and Technology, Hebei University, Baoding 071002, China. E-mail: hdwangyl@mail.hbu.edu.cn

Abstract

We present a method to determine where the nanoparticles nucleate and grow during pulsed laser deposition in an ambient gas. Briefly, nanocrystalline Si films are systemically deposited on the substrates located at a distance from the plasma and placed in horizontal direction; meanwhile an external electric field is introduced perpendicularly to the plume. Based on the transportation dynamics of Si nanoparticles corresponding to different electric fields, the lateral nucleation range of 0.1 to 33.8 mm is determined for Si nanoparticles deposited in 10 Pa Ar gas at a laser fluence of 4 J/cm2. Further simulation of the mass and area density of Si nanoparticles demonstrates that both nucleation and growth probabilities in nucleation region are approximately Gauss-dependent of the lateral distance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aghaei, M., Mehrabian, S. & Tavassoli, S.H. (2008). Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation. J. Appl. Phys. 104, 053303.Google Scholar
Alti, K. & Khare, A. (2006). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 4753.Google Scholar
Badziak, J., Woryna, E., Parys, P., Platonov, K.Y., Jabłonski, S., Ryc, L., Vankov, A.B. & Wołowski, J. (2001). Fast proton generation from ultrashort laser pulse interaction with double-layer foil targets. Phys. Rev. Lett. 87, 215001.Google Scholar
Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Breschi, E., Borghesi, M., Campbell, D.H., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, L., Schiavi, A. & Willi, O. (2004). Spectral and angular characterization of laser-produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.CrossRefGoogle Scholar
Caridi, F., Torrisi, L., Margarone, D. & Borrielli, A. (2008). Investigations on low temperature laser-generated plasma. Laser Part. Beams 26, 265271.Google Scholar
Chen, H., Wilks, S.C., Bonlie, J.D., Liang, E.P., Myatt, J., Price, D.F., Meyerhofer, D.D. & Beiersdorfer, P. (2009). Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001.Google Scholar
Cobble, J.A., Johnson, R.P., Cowan, T.E., Renard-Legalloudec, N. & Allen, M. (2002). High resolution laser-driven proton radiography. J. Appl. Phys. 92, 17751779.Google Scholar
Fu, G.S., Wang, Y.L., Chu, L.Z., Zhou, Y., Yu, W., Han, L. & Peng, Y.C. (2005). The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas. Europhys. Lett. 69, 758762.Google Scholar
Hirasawa, M., Orii, T. & Seto, T. (2006). Size-dependent crystallization of Si nanoparticles. Appl. Phys. Lett. 88, 093119.CrossRefGoogle Scholar
Krushelnick, K., Najmudin, Z. & Dangor, A.E. (2007). Particle acceleration using intense laser produced plasmas. Laser Phys. Lett. 4, 847862.CrossRefGoogle Scholar
Linz, U. & Alonso, J. (2007). What will it take for laser driven proton accelerations to be applied to tumor therapy. Phys. Rev. ST AB 10, 094801.Google Scholar
Liu, B., Zhang, H., Fu, L.B., Gu, Y.Q., Zhang, B.H., Liu, M.P., Xie, B.S., Liu, J. & He, X.T. (2010). Ion jet generation in the ultraintense laser interactions with rear-side concave target. Laser Part. Beams 28, 351359.Google Scholar
Mackinnon, A.J., Patel, P.K., Town, R.P., Edwards, M.J., Phillips, T., Lerner, S.C., Price, D.W., Hicks, D., Key, M.H., Hatchett, S., Wilks, S.C., Borghesi, M., Romagnani, L., Kar, S., Toncian, T., Pretzler, G., Willi, O., Koenig, M., Martinolli, E., Lepape, S., Benuzzi-Mounaix, A., Audebert, P., Gauthier, J.C., King, J., Snavely, R., Freeman, R.R. & Boehlly, T. (2004). Proton radiography as an electromagnetic field and density perturbation diagnostic. Rev. Sci. Instrum. 75, 3531.CrossRefGoogle Scholar
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2008). Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447453.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Morales, A.M. & Lieber, C.M. (1998). A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Sci. 279, 208211.Google Scholar
Muramoto, J., Sakamoto, I., Nakata, Y., Okada, T. & Maeda, M. (1999). Influence of electric field on the behavior of Si nanoparticles generated by laser ablation. Appl. Phys. Lett. 75, 751753.CrossRefGoogle Scholar
Muramoto, J., Inmaru, T., Nakata, Y., Okada, T. & Maeda, M. (2000). Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection. Appl. Phys. Lett. 77, 23342336.Google Scholar
Nakata, Y., Muramoto, J., Okada, T. & Maeda, M. (2002). Particle dynamics during nanoparticle synthesis by laser ablation in a background gas. J. Appl. Phys. 91, 16401643.CrossRefGoogle Scholar
Okamuro, K., Hashida, M., Miyasaka, Y., Ikuta, Y., Tokita, S. & Sakabe, S. (2010). Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys. Rev. B. 82, 165417.CrossRefGoogle Scholar
Phillips, A.B. & Shivaram, B.S. (2009). High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering. Nanotechnol. 20, 204020.Google Scholar
Renner, O., Juha, L., Krasa, J., Krousky, E., Pfeifer, M., Velyhan, A., Granja, C., Jakubek, J., Linhart, V., Slavicek, T., Vykydal, Z., Pospisil, S., Kravarik, J., Ullschmied, J., Andreev, A.A., Kampfer, T., Uschmann, I. & Forster, E. (2008). Low-energy nuclear transitions in subrelativistic laser-generated plasmas. Laser Part. Beams 26, 249257.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brownl, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Schmid, M., Lenauer, C., Buchsbaum, A., Wimmer, F., Rauchbauer, G., Scheiber, P., Betz, G. & Varga, P. (2009). High Island Densities in Pulsed Laser Deposition: Causes and Implications. Phys. Rev. Lett. 103, 076101.CrossRefGoogle ScholarPubMed
Seto, T., Kawakami, Y., Suzuki, N., Hirasawa, M. & Aya, N. (2001). Laser Synthesis of Uniform Silicon Single Nanodots. Nano Lett. 1, 315318.CrossRefGoogle Scholar
Seto, T., Orii, T., Hirasawa, M. & Aya, N. (2003). Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation. Thin Solid Films 437, 230234.Google Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2 /Ar atmosphere. Laser Part. Beams 23, 149153.CrossRefGoogle Scholar
Umezu, I., Takata, M. & Sugimura, A. (2008). Surface hydrogenation of silicon nanocrystallites during pulsed laser ablation of silicon target in hydrogen background gas. J. Appl. Phys. 103, 114309.Google Scholar
Wang, W.T., Liu, J.S., Cai, Y., Wang, C., Liu, L., Xia, C.Q., Deng, A.H., Xu, Y., Leng, Y.X., Li, R.X. & Xu, Z.Z. (2010). Angular and energy distribution of fast electrons emitted from a solid surface irradiated by femtosecond laser pulses in various conditions. Physics of Plasmas 17, 023108.Google Scholar
Wang, X., Yu, W., Yu, M.Y., Senecha, V.K., Xu, H., Wang, J.W., Yuan, X. & Sheng, Z.M. (2009). Efficient acceleration of a small dense plasma pellet by consecutive action of multiple short intense laser pulses. Laser Part. Beams 27, 629634.Google Scholar
Wang, Y.L., Li, Y.L. & Fu, G.S. (2006). Relation between size-distribution of Si nanoparticles and oscillation-stabilization time of the mixed region produced during laser ablation. Nucl. Instr. Meth. B 252, 245248.Google Scholar
Wang, Y.L., Xu, W., Zhou, Y., Chu, L.Z. & Fu, G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.Google Scholar
Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, C. & Kolenbrander, K.D. (1994). Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl. Phys. Lett. 64, 18211823.Google Scholar
Yan, H., Cingarapu, S., Klabunde, K.J., Chakrabarti, A. & Sorensen, C.M. (2009). Nucleation of Gold Nanoparticle Superclusters from Solution. Phys. Rev. Lett. 102, 095501.Google Scholar
Yogo, A., Sato, K., Nishikino, M., Mori, M., Teshima, T., Numasaki, H., Murakami, M., Demizu, Y., Akagi, S., Nagayama, S., Ogura, K., Sagisaka, A., Orimo, S., Nishiuchi, M., Pirozhkov, A.S., Ikegami, M., Tampo, M., Sakaki, H., Suzuki, M., Daito, I., Oishi, Y., Sugiyama, H., Kiriyama, H., Okada, H., Kanazawa, S., Kondo, S., Shimomura, T., Nakai, Y., Tanoue, M., Sasao, H., Wakai, D., Bolton, P.R. & Daido, H. (2009). Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett 94, 181502.CrossRefGoogle Scholar
Yoshida, T., Takeyama, S., Yamada, Y. & Mutoh, K. (1996). Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas. Appl. Phys. Lett. 68, 17721774.Google Scholar