Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:40:10.734Z Has data issue: false hasContentIssue false

Molybdenum thin films via pulsed laser deposition technique for first mirror application

Published online by Cambridge University Press:  25 September 2012

A.T.T. Mostako
Affiliation:
Laser and Photonics laboratory, Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
Alika Khare*
Affiliation:
Laser and Photonics laboratory, Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
*
Address correspondence and reprint requests to: Alika Khare, Department of physics, Indian Institute of Technology Guwahati, Guwahati-781039, India. E-mail: alika@iitg.ernet.in

Abstract

Mirror like Molybdenum thin films on SS substrate in vacuum (10−3 Pa) and in Helium environment has been achieved by Pulsed Laser Deposition (PLD) Technique. The PLD thin films of Molybdenum have been characterized by using X-ray Diffraction (XRD) pattern, Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and Energy Dispersive X-ray (EDX). The specular reflectivity was recorded with Fourier Transform Infra-Red spectrometer and UV-Visible spectrometer. The optical quality of the thin films was tested via interferometric technique. At the optimum deposition parameters, the crystal orientation was in Mo(110) phase. The FIR-UV-Visible reflectivity of the mirror was found to be closed to that of the polished bulk Molybdenum and Stainless Substrate (SS) substrate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brailovsky, A.B., Gapnov, S.V. & Luchin, V.I. (1995). Mechanisms of melt droplets and solid-particle ejection from a target surface by pulsed laser action. Appl. Phys. A 61, 8186.CrossRefGoogle Scholar
Culity, B.D. (1956). Elements of X-Ray Diffraction. Massachusetts: Addison-Wesley.Google Scholar
Djerdj, I., Tonejc, A.M., Tonejc, A. & Radic, N. (2005). XRD line profile analysis of tungsten thin films. Vac. 80, 151158.CrossRefGoogle Scholar
Fruchart, O., Jaren, S. & Rothman, J. (1998). Growth modes of W and Mo thin epitaxial (110) films on (1120) sapphire. Appl. Sur. Sci. 135, 218232.CrossRefGoogle Scholar
Gesheva, K.A. & Abrosimova, V. (1992). Rapid thermal annealing of CVD Mo thin films. Bulgarian J. Phys. 19, 7881.Google Scholar
Hernandez, M., Juarez, A. & Hernandez, R. (1999). Interferometric thickness determination of thin metallic films. Superficies Y. Vacio. 9, 283285.Google Scholar
Hirata, T. & Saito, K. (1990). The reflectance of sputtered molybdenum thin films implanted with nitrogen ions. J. Mat. Sci. Lett. 9, 827828.CrossRefGoogle Scholar
Kamlesh, A. & Khare, A. (2005). Low-energy Low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 4753.Google Scholar
Kamlesh, A. & Khare, A. (2006). Sculpted pulsed indium atomic beams via selective laser ablation of thin film. Laser Part. Beams 24, 469473.Google Scholar
Khatri, H. & Marsillac, S. (2008). The effect of deposition parameters on radiofrequency sputtered molybdenum thin films. J. Phys. Condens. Mat. 20, 15.CrossRefGoogle Scholar
Juppo, M., Vehkamaki, M., Ritala, M. & Leskela, M. (1998). Deposition of molybdenum thin films by an alternate supply of MoCl5 and Zn. J. Vac. Sci. Technol. A 16, 28452850.CrossRefGoogle Scholar
Lam, Y.M., Tran, D.V. & Zheng, H.Y. (2007). A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser Part. Beams 25, 155159.CrossRefGoogle Scholar
Lipa, M., Schunke, B., Gil, C., Bucalossi, J., Voitsenya, V. S., Konovalov, V., Vukolov, K., Balden, M., Temmerman, G.D., Oelhafen, P., Litnovsky, A. & Wienhold, P. (2006). Analyses of metallic first mirror samples after long term plasma exposure in Tore Supra. Fusion Eng. Desi. 81, 221.Google Scholar
Marot, L., Temmerman, G.D., Thommen, V., Mathys, D. & Oelhafen, P. (2008). Characterization of magnetron sputtered rhodium films for reflective coatings. Surf. Coat. Tech. 202, 28372843.CrossRefGoogle Scholar
Nath, A. & Khare, A. (2011). Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids. J. App. Phys. 110, 043111043117.CrossRefGoogle Scholar
Orlov, N.Y., Denisov, O.B., Rosmej, O.N., Schafer, D., Nisius, T., Wilhein, T., Zhidkov, N., Kunin, A., Suslov, N., Pinegin, A., Vatulin, V. & Zhao, Y. (2011). Theoretical and experimental studies of material radiative properties and their application to laser and heavy ion inertial fusion. Laser Part. Beams 29, 6980.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarake, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Shena, Y.G., Mai, Y.W., Zhang, Q.C., Mckenzie, D.R., Mcfall, W.D. & Mcbride, W.E. (2000). Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering. J. Appl. Phys. 87, 177187.CrossRefGoogle Scholar
Tomachuk, C.R., De Rosa, L., Springer, J., Mitton, D.B., Saiello, S. & Bellucc, F. (2004). The wet corrosion of molybdenum thin film-Part II Behavior at 85°C. Mat. Corrosion. 55, 665670.CrossRefGoogle Scholar
Voitsenya, V.S., Bardamid, A.F., Bondarenko, V.N., Jacob, W., Konovvalov, V.G., Masuzaki, S., Motojima, O., Orilinsikij, D.V., Poperenko, V.L., Ryzhokov, I.V., Sagara, A., Shtan, A.F., Solodovchenko, S.I. & Vinnichenko, M.V. (2001 a). Some problems arising due to plasma-surface interaction for operation of the in-vessel mirrors in a fusion reactor. J. Nucl. Mat. 290, 336340.CrossRefGoogle Scholar
Voitsenya, V., Costley, A.E., Bandourko, V., Bardamid, A., Bandourko, V., Hirooka, Y., Kasai, S., Klassen, N., Konovalov, V., Nagatsu, M., Orlinskij, D., Orsitto, F., Poperenko, L., Solodovchenko, S., Stan, A., Sugie, T., Taniguchi, M., Vinnichenko, M., Vukolov, K. & Zvonkov, S. (2001 b). Diagnostic first mirrors for buring plasma experiments (invited). Rev. Sci. Instrum. 72, 475482.CrossRefGoogle Scholar
Voitsenya, V.S., Konovalov, V.G., Shtan, A.F., Solodovchenko, S.I., Becker, M.F., Bardamid, A.F., Yakimov, K.I., Gritsyna, V.T. & Orlinskij, D.V. (1999). Some problems of the material choice for the first mirrors of plasma diagnostics in a fusion reactor. Rev. Sci. Instrum. 70, 790793.CrossRefGoogle Scholar
Zhou, Y., Gao, B.Y., Jiao, Y.M., Deng, Z.C., Tang, Y.W., Yi, J., Tian, C.L., Ding, X.T. & Liu, Y. (2006). Study of first mirror exposure and protection in HL-2A tokomak. Fusion Eng. Desi. 81, 28232826.CrossRefGoogle Scholar
Wang, Y.L., Chen, C., Ding, X.C., Chu, L.Z., Deng, Z.C., Liang, W.H., Chen, J.Z. & Fu, G.S. (2011). Nucleation and growth of nanopartciles during pulsed laser deposition in an ambient gas. Laser Part. Beams. 29, 105111.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, Turan, R., & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar