Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:14:51.809Z Has data issue: false hasContentIssue false

The model of the influence of the electron refluxing on the electron transport and K α emission

Published online by Cambridge University Press:  07 August 2017

J.C. Zhao
Affiliation:
School of Physics, Beijing Institute of Technology, Beijing 100081, China Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
L.H. Cao*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
J.H. Zheng
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
Z.Q. Zhao
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
Z.J. Liu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
C.Y. Zheng
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
H. Zhang
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Y.Q. Gu
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing 100871, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
J. Liu*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
*
Address correspondence and reprint requests to: L.H. Cao and J. Liu, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail: cao_lihua@iapcm.ac.c and liu_jie@iapcm.ac.cn
Address correspondence and reprint requests to: L.H. Cao and J. Liu, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail: cao_lihua@iapcm.ac.c and liu_jie@iapcm.ac.cn

Abstract

In our previous research (Zhao et al., 2016), we focus on the transport processes from hot electrons to K α X-ray emission in a copper foil and nanobrush target when the electron refluxing effect is not taken into account. In this work, considering the refluxing effect, the transport of hot electrons in a solid target is studied by adding the electric fields both at the front and rear surfaces of the target with Monte Carlo code Geant4. Simulation results show that the electron refluxing has an important influence on K α photon yield and the size of K α radiation source. K α yield from the 10-μm-thick target with the electron refluxing effect is 2.7–3.7 times more than that without the refluxing for the electron temperatures from 0.4 to 1.4 MeV. The laser-to-K α photon energy conversion efficiency ${\rm \eta} _{L \to K_{\rm \alpha}} $ with the refluxing effect is always higher than that without the refluxing, and both of them decrease gradually with laser strength Iλ2. Considering the electron refluxing effect or not, the variations of K α yield with the target thickness d are very different. A critical thickness of the target d c (~30 μm) is achieved to confirm whether the refluxing effect is valid for the target. For the target with the thickness d less than d c, the refluxing effect can enhance K α yield with several times, while for the target with the thickness d larger than d c, the refluxing effect is not so effective. The full-width at half-maximum increases from 23 to 56 µm after including the refluxing effect by the electron beam with the radius of 10 µm and the temperature of 400 keV.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J.J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Salvo, E.D., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Tehrani, E.S., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H. & Zschiesche, D. (2003). GEANT4a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sec. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250303.CrossRefGoogle Scholar
Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Controll. Fusion 39, 653.CrossRefGoogle Scholar
Cao, L., Gu, Y., Zhao, Z., Cao, L., Huang, W., Zhou, W., Cai, H.B., He, X.T., Yu, W. & Yu, M.Y. (2010). Control of the hot electrons produced by laser interaction with nanolayered target. Phys. Plasmas 17, 103106.CrossRefGoogle Scholar
Cao, L., Pei, W., Liu, Z., Chang, T., Li, B., & Zheng, C. (2006). PIC-MC code to model fast electron beam transport through dense matter. Plasma Sci. Technol. 8, 269.Google Scholar
Chen, S.N., Gregori, G., Patel, P.K., Chung, H.K., Evans, R.G., Freeman, R.R., Saiz, E. G., Glenzer, S.H., Hansen, S.B., Khattak, F.Y., King, J.A., Mackinnon, A.J., Notley, M.M., Pasley, J.R., Riley, D., Stephens, R.B., Weber, R.L., Wilks, S.C. & Beg, F.N. (2007). Creation of hot dense matter in short-pulse laser-plasma interaction with tamped titanium foils. Phys. Plasmas 14, 102701.CrossRefGoogle Scholar
Colgan, J., Abdallah, J. Jr., Faenov, A.Ya., Pikuz, S.A., Wagenaars, E., Booth, N., Culfa, O., Dance, R.J., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.L., Skobelev, I.Yu., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2013). Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime. Phys. Rev. Lett. 110, 125001.CrossRefGoogle ScholarPubMed
Colgan, J., Faenov, A.Ya., Pikuz, S.A., Tubman, E., Butler, N.M.H., Abdallah, J. Jr., Dance, R.J., Pikuz, T.A., Skobelev, I. Yu., Alkhimova, M.A., Booth, N., Green, J., Gregory, C., Andreev, A., Lötzsch, R., Uschmann, I., Zhidkov, A., Kodama, R., McKenna, P. & Woolsey, N. (2016). Evidence of high-n hollow-ion emission from Si ions pumped by ultraintense x-rays from relativistic laser plasma. EPL 114, 35001.CrossRefGoogle Scholar
Davies, J.R. (2002). How wrong is collisional Monte Carlo modeling of fast electron transport in high-intensity laser-solid interactions. Phys. Rev. E 65, 026407.CrossRefGoogle ScholarPubMed
Faenov, A.Ya., Colgan, J., Hansen, S.B., Zhidkov, A., Pikuz, T.A., Nishiuchi, M., Pikuz, S.A., Skobelev, I. Yu., Abdallah, J., Sakaki, H., Sagisaka, A., Pirozhkov, A.S., Ogura, K., Fukuda, Y., Kanasaki, M., Hasegawa, N., Nishikino, M., Kando, M., Watanabe, Y., Kawachi, T., Masuda, S., Hosokai, T., Kodama, R. & Kondo, K. (2015 a). Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser. Sci. Rep. 5, 13436.CrossRefGoogle ScholarPubMed
Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Pikuz, S.A. Jr., Kodama, R. & Fortov, V.E. (2015 b). Diagnostics of warm dense matter by high-resolution X-ray spectroscopy of hollow ions. Laser Part. Beams 33, 2739.CrossRefGoogle Scholar
Fiorini, F., Neely, D., Clarke, R.J. & Green, S. (2014). Characterization of laser-driven electron and photon beams using the Monte Carlo code FLUKA. Laser Part. Beams 32, 233241.CrossRefGoogle Scholar
Gu, Y.Q., Cai, D.F., Zheng, Z.J., Yang, X.D., Zhou, W.M., Jiao, C.Y., Chen, H., Wen, T.S. & Chunyu, S.T. (2005). Experimental study on energy distribution of the hot electrons generated by femtosecond laser interacting with solid targets. Acta Phys. Sin. 54, 186191.CrossRefGoogle Scholar
Haines, M.G., Wei, M.S., Beg, F.N. & Stephens, R.B. (2009). Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett. 102, 045008.CrossRefGoogle ScholarPubMed
Hansen, S.B., Colgan, J., Faenov, A.Ya., Abdallah, J. Jr., Pikuz, S.A. Jr., Skobelev, I.Yu., Wagenaars, E., Booth, N., Culfa, O., Dance, R.J., Tallents, G.J., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.K., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2014). Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma. Phys. Plasmas 21, 031213.CrossRefGoogle Scholar
Kostyukov, I.Yu., Nerush, E.N. & Litvak, A.G. (2012). Radiative damping in plasma-based accelerators. Phys. Rev. Spec. Top. Accel. Beams 15, 111001.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Myatt, J., Theobald, W., Delettrez, J.A., Stoeckl, C., Storm, M., Sangster, T.C., Maximov, A.V. & Short, R.W. (2007). High-intensity laser interactions with mass-limited solid targets and implications for fast-ignition experiments on OMEGA EP a. Phys. Plasmas 14, 056301.CrossRefGoogle Scholar
Nakamura, T., Koga, J.K., Esirkepov, T., Zh., , Kando, M., Korn, G. & Bulanov, S.V. (2012). High-power γ-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett. 108, 195001.CrossRefGoogle ScholarPubMed
Nilsen, J. (2016). Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes. Matter Rad. Extremes 1, 7681.CrossRefGoogle Scholar
Pandit, R.R. & Sentoku, Y. (2012). Higher order terms of radiative damping in extreme intense laser-matter interaction. Phys. Plasmas 19, 073304.CrossRefGoogle Scholar
Park, H.S., Chambers, D.M., Chung, H.K., Clarke, R.J., Eagleton, R., Giraldez, E., Goldsack, T., Heathcote, R., Izumi, N., Key, M.H., King, J.A., Koch, J.A., Landen, O.L., Nikroo, A., Patel, P.K., Price, D.F., Remington, B.A., Robey, H.F., Snavely, R.A., Steinman, D.A., Stephens, R.B., Stoeckl, C., Storm, M., Tabak, M., Theobald, W., Town, R.P.J., Wickersham, J.E. & Zhang, B.B. (2006). High-energy K¦Á radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 056309.CrossRefGoogle Scholar
Pikuz, S.A., Faenov, A.Ya., Colgan, J., Dance, R.J., Abdallah, J., Wagenaars, E., Booth, N., Culfa, O., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.L., Skobelev, I.Yu., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2013). Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses. High Energy Density Phys. 9, 560.CrossRefGoogle Scholar
Pikuz, S.A., Faenov, A.Ya., Skobelev, I.Yu. & Fortov, V.E. (2014 a). Production of exotic states of matter with the use of X-rays generated by focusing a petawatt laser pulse onto a solid target. Phys. – Usp. 57, 702.CrossRefGoogle Scholar
Pikuz, S.A., Skobelev, I.Yu., Alkhimova, M.A., Pokrovskii, G.V., Colgan, J., Pikuz, T.A., Faenov, A.Ya., Soloviev, A.A., Burdonov, K.F., Eremeev, A.A., Sladko, A.D., Osmanov, R.R., Starodubtsev, M.V., Ginzburg, V.N., Kuz¡¯min, A.A., Sergeev, A.M., Fuchs, J., Khazanov, E.A., Shaikin, A.A., Shaikin, I.A. & Yakovlev, I.V. (2017). Formation of a plasma with the determining role of radiative processes in thin foils irradiated by a pulse of the PEARL subpetawatt laser. JETP Lett. 105, 1317.CrossRefGoogle Scholar
Pikuz, T., Faenov, A., Magnitskiy, S., Nagorskiy, N., Tanaka, M., Ishino, M., Nishikino, M., Fukuda, Y., Kando, M., Kato, Y. & Kawachi, T. (2014 b). Coherent X-ray mirage: discovery and possible applications. High Power Laser Sci. Eng. 2, e12.CrossRefGoogle Scholar
Quinn, M.N., Yuan, X.H., Lin, X.X., Carroll, D.C., Tresca, O., Gray, R.J., Coury, M., Li, C., Li, Y.T., Brenner, C.M., Robinson, A.P.L., Neely, D., Zielbauer, B., Aurand, B., Fils, J., Kuehl, T. & McKenna, P. (2011). Refluxing of fast electrons in solid targets irradiated by intense, picosecond laser pulses. Plasma Phys. Controll. Fusion 53, 025007.CrossRefGoogle Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L. & Bell, A.R. (2012). Dense electron–positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.CrossRefGoogle ScholarPubMed
Sentoku, Y., Cowan, T.E., Kemp, A. & Ruhl, H. (2003). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.CrossRefGoogle Scholar
Sokolowski-Tinten, K., Blome, C., Blums, J., Cavalleri, A., Dietrich, C., Tarasevitch, A., Uschmann, I., Förster, E., Kammler, M., Horn-von-Hoegen, M. & von der Linde, D. (2003). Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287289.CrossRefGoogle ScholarPubMed
Toth, R., Fourmaux, S., Ozaki, T., Servol, M., Kieffer, J.C., Kincaid, R.E. Jr. & Krol, A. (2007). Evaluation of ultrafast laser-based hard X-ray sources for phase-contrast imaging. Phys. Plasmas 14, 053506.CrossRefGoogle Scholar
Wang, J., Zhao, Z., He, W., Zhu, B., Dong, K., Wu, Y., Zhang, T., Niu, G., Zhou, K., Xie, N., Zhou, W. & Gu, Y. (2015). Radiography of a Kα X-ray source generated through ultrahigh picosecond laser–nanostructure target interaction. Chin. Opt. Lett. 13, 031001031001.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Physical Review Letters 69, 1383.CrossRefGoogle ScholarPubMed
Zhao, J., Zheng, J., Cao, L., Zhao, Z., Li, S., Gu, Y. & Liu, J. (2016). Monte Carlo simulations of K source generated by hot electrons-nanobrush target interactions. Phys. Plasmas 23, 093102.CrossRefGoogle Scholar
Zhao, Z., Cao, L., Cao, L., Wang, J., Huang, W., Jiang, W., He, Y., Wu, Y., Zhu, B., Dong, K., Ding, Y., Zhang, B., Gu, Y., Yu, M.Y. & He, X.T. (2010). Acceleration and guiding of fast electrons by a nanobrush target. Phys. Plasmas 17, 123108.CrossRefGoogle Scholar
Zhidkov, A., Koga, J., Sasaki, A. & Uesaka, M. (2002). Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. Phys. Rev. Lett. 88, 185002.CrossRefGoogle ScholarPubMed