Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T14:50:09.452Z Has data issue: false hasContentIssue false

Low temperature photoionized Ne plasmas induced by laser-plasma EUV sources

Published online by Cambridge University Press:  20 March 2015

A. Bartnik*
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
H. Fiedorowicz
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
T. Fok
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
R. Jarocki
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
M. Szczurek
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
P. Wachulak
Affiliation:
Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
*
Address correspondence and reprint requests to: A. Bartnik, Military University of Technology, Warsaw, Mazowsze, Poland. Email: andrzej.bartnik@wat.edu.pl

Abstract

In this work, two laser-produced plasma (LPP) sources – extreme ultraviolet (EUV) and a LPP soft X-ray (SXR) source were used to create Ne photoionized plasmas. A radiation beam was focused onto a gas stream, injected into a vacuum chamber synchronously with the radiation pulse. EUV radiation spanned a wide spectral range with pronounced maximum centered at λ≈11 nm, while in case of the SXR source spectral maximum was at λ≈1.4 nm. Emission spectra of photoionized plasmas created this way were measured in a wide spectral range λ = 10–100 nm. The dominating spectral lines originated from singly charged ions (Ne II) and neutral atoms (Ne I). For the highest radiation fluence, spectral lines originating from Ne III and even Ne IV species were detected. Differences between the experimental spectra, obtained for all irradiation conditions, were analyzed. They were attributed either to different fluence or spectral distribution of driving photons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, J.E., Cohen, D., Chandler, G., Cuneo, M., Foord, M., Heeter, R., Jobe, D., Lake, P., Liedahl, D., MacFarlane, J., Nash, T., Nielson, D., Smelser, R. & Stygar, W. (2001). Neon photoionization experiments driven by Z-pinch radiation. J. Quantum Spectrosc. Radiat. Transf. 71, 157.CrossRefGoogle Scholar
Bartnik, A., Fiedorowicz, H., Jarocki, R., Juha, L., Kostecki, J., Rakowski, R. & Szczurek, M. (2005). Micromachining of organic polymers by X-ray photo-etching using a 10 Hz laser-plasma radiation source. Microelectron. Eng. 78–79, 452456.CrossRefGoogle Scholar
Bartnik, A., Fiedorowicz, H., Jarocki, R., Kostecki, J., Szczurek, M. & Wachulak, P.W. (2011). Laser-plasma EUV source dedicated for surface processing of polymers. Nucl. Inst. Methods Phys. Res. A 647, 125131.CrossRefGoogle Scholar
Bartnik, A., Fedosejevs, R., Wachulak, P., Fiedorowicz, H., Serbanescu, C., Saiz, E.G., Riley, D., Toleikis, S. & Neely, D. (2013 a). Photo-ionized neon plasmas induced by radiation pulses of a laser-plasma EUV source and a free electron laser FLASH. Laser Part. Beams 31, 195201.CrossRefGoogle Scholar
Bartnik, A., Wachulak, P., Fiedorowicz, H., Fok, T., Jarocki, R. & Szczurek, M. (2013 b). Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas. Phys. Plasmas 20, 113302.CrossRefGoogle Scholar
Bartnik, A., Wachulak, P., Fiedorowicz, H., Jarocki, R., Kostecki, J. & Szczurek, M. (2013 c). Luminescence of He and Ne gases induced by EUV pulses from a laser plasma source. Radiat. Phys. Chem. 93, 914.CrossRefGoogle Scholar
Cohen, D.H., MacFarlane, J.J., Bailey, J.E. & Liedahl, D.A. (2003). X-ray spectral diagnostics of neon photoionization experiments on the Z-machine, Rev. Sci. Instrum. 74, 1962.CrossRefGoogle Scholar
Fujioka, S., Takabe, H., Yamamoto, N., Salzmann, D., Wang, F., Nishimura, H., Li, Y., Dong, Q., Wang, S., Zhang, Y., Rhee, Y., Lee, Y., Han, J., Tanabe, M., Fujiwara, T., Nakabayashi, Y., Zhao, G., Zhang, J. & Mima, K. (2009). X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion. Nat. Phys. 5, 821825.CrossRefGoogle Scholar
Gallagher, J.W., Brion, C.E., Samson, J.A.R. & Langhoff, P.W. (1988). Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes. J. Phys. Chem. Ref. Data 17, 9153.CrossRefGoogle Scholar
Griffin, D.C., Mitnik, D.M. & Badnell, N.R. (2001). Electron-impact excitation of Ne+. J. Phys. B: At. Mol. Opt. Phys. 34, 44014415.CrossRefGoogle Scholar
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Doppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348.CrossRefGoogle Scholar
Itikawa, Y., Ichimura, A., Onda, K., Sakimoto, K., Takayanagi, K., Hatano, Y., Hayashi, M., Nishimura, H. & Tsurubuchi, S. (1989). Cross sections for collisions of electrons and photons with oxygen molecules. J. Phys. Chem. Ref. Data 18, 2342.CrossRefGoogle Scholar
Juha, L., Krasa, J., Cejnarova, A., Chvostova, D., Vorlicek, V., Krzywinski, J., Sobierajski, R., Andrejczuk, A., Jurek, M., Klinger, D., Fiedorowicz, H., Bartnik, A., Pfeifer, M., Kubat, P., Pina, L., Kravarik, J., Kubes, P., Bakshaev, Y.L., Korolev, V.D., Chernenko, A.S., Ivanov, M.I., Scholz, M., Ryc, L., Feldhaus, J., Ullschmied, J. & Boody, F.P. (2003). Ablation of various materials with intense XUV radiation. Nucl. Instrum. Methods A 507, 577.CrossRefGoogle Scholar
Lammer, H., Eybl, V., Kislyakova, K.G., Weingrill, J., Holmström, M., Khodachenko, M.L., Kulikov, Yu.N., Reiners, A., Leitzinger, M., Odert, P., Xiang Grüß, M., Dorner, B., Güdel, M. & Hanslmeier, A. (2011). UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: Testing atmosphere evolution scenarios, Astrophys. Space Sci. 335, 3950.CrossRefGoogle Scholar
Makimura, T., Kenmotsu, Y., Miyamoto, H., Niino, H. & Murakami, K. (2005). Ablation of silica glass using pulsed laser plasma soft X-rays. Surf. Sci. 593, 248251.CrossRefGoogle Scholar
Mancini, R.C., Bailey, J.E., Hawley, J.F., Kallman, T., Witthoeft, M., Rose, S.J. & Takabe, H. (2009). Accretion disk dynamics, photoionized plasmas, and stellar opacities. Phys. Plasmas 16, 041001.CrossRefGoogle Scholar
Pequignot, D., Petitjean, P. & Boisson, C. (1991). Total and effective radiative recombination coefficients. Astron. Astrophys. 251, 680688.Google Scholar
Perry, T.S., Springer, P.T., Fields, D.F., Bach, D.R., Serduke, F.J.D., Iglesias, C.A., Rogers, F.J., Nash, J.K., Chen, M.H., Wilson, B.G., Goldstein, W.H., Rozsynai, B., Ward, R.A., Kilkenny, J.D., Doyas, R., Da Silva, L.B., Back, C.A., Cauble, R., Davidson, S.J., Foster, J.M., Smith, C.C., Bar-Shalom, A. & Lee, R.W. (1996). Absorption experiments on x-ray-heated mid-Z constrained samples. Phys. Rev. E 54, 56175631.CrossRefGoogle ScholarPubMed
Samson, J.A.R. & Stolte, W.C. (2002). Precision measurements of the total photoionization cross-sections of He, Ne, Ar, Kr, and Xe. J. Electron Spectrosc. Relat. Phenom. 123, 265276.CrossRefGoogle Scholar
Tsurubuchi, S., Arakawa, K., Kinokuni, S. & Motohashi, K. (2000). Electron-impact cross sections of Ne. J. Phys. B: At. Mol. Opt. Phys. 33, 37133723.CrossRefGoogle Scholar
Verner, D.A., Verner, E.M. & Ferland, G.J. (1996). Atomic data for permitted resonance lines of atoms and ions from H to Si, and S, Ar, Ca, and Fe. At. Data Nucl. Data Tables 64, 1180.CrossRefGoogle Scholar
Watson, W.S. (1972). Photoionization of helium, neon and argon in the 60–230 eV photon energy range. J. Phys. B: At. Mol. Phys. 5, 22922303.CrossRefGoogle Scholar
Wei, H.G., Shi, J.R., Zhao, G., Zhang, Y., Dong, Q.L., Li, Y.T., Wang, S.J., Zhang, J., Liang, Z.T., Zhang, J.Y., Wen, T.S., Zhang, W.H., Hu, X., Liu, S.Y., Ding, Y.K., Zhang, L., Tang, Y.J., Zhang, B.H., Zheng, Z.J., Nishimura, H., Fujioka, S., Wang, F.L. & Takabe, H. (2008). Opacity studies of silicon in radiatively heated plasmas. Astrophys. J. 683, 577583.CrossRefGoogle Scholar
Zhang, Y., Katoh, T., Washio, M., Yamada, H. & Hamada, S. (1995). High aspect ratio micromachining Teflon by direct exposure to synchrotron radiation. Appl. Phys. Lett. 67, 872.CrossRefGoogle Scholar