Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:00:33.652Z Has data issue: false hasContentIssue false

Linear theory of quantum two-stream instability in a magnetized plasma with a transverse wiggler magnetic field

Published online by Cambridge University Press:  10 June 2014

A. Hasanbeigi*
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
S. Moghani
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
H. Mehdian
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
*
Address correspondence and reprint requests to: A. Hasanbeigi, Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofateh Avenue, Tehran 15614, Iran. E-mail: hbeigi@khu.ac.ir

Abstract

A fluid description is used to study the properties of two-stream instability due to interaction of a non-relativistic electron beam with quantum magnetized plasma and transverse wiggler magnetic field. It is assumed that the background plasma provides charge and current neutralization of the electron beam. The dispersion relation is obtained by solving and linearizing fluid-Maxwell equations. The resulting dispersion equation is analyzed numerically over a wide range of system parameters. The results of quantum and classical treatments are compared numerically, with including the effects of wiggler on the dispersion relation. It is found that the transverse wiggler magnetic field can strongly improve the instability of quantum plasma as well as classical plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, S. & Shukla, P.K. (2007). Streaming instability in quantum dusty plasmas. Eur. Phys. J. D 41, 319.CrossRefGoogle Scholar
Andersson, N., Comer, G.L. & Prix, R. (2004). The superfluid two-stream instability. Mod. Not. R. Astro. Soc. 354, 101.CrossRefGoogle Scholar
Andersson, N., Comer, G.L. & Prix, R. (2003). Are Pulsar Glitches Triggered by a Superfluid Two-Stream Instability? Phys. Rev. Lett. 90, 091101.CrossRefGoogle ScholarPubMed
Ang, L.K., Koh, W.S., Lau, Y.Y. & Kwan, T.J.T. (2006). Space-charge-limited flows in the quantum regime. Phys. Plasmas 13, 056701.CrossRefGoogle Scholar
Bret, A. (2009). Weibel, two-stream, filamentation, oblique, bell, buneman...which one grows faster? Astrophys. 699, 990.CrossRefGoogle Scholar
Bret, A. (2008). Filamentation instability in a quantum magnetized plasma. Phys. Plasmas 15, 022109.CrossRefGoogle Scholar
Bret, A. (2007). Filamentation instability in a quantum plasma. Phys. Plasmas 14, 084503.CrossRefGoogle Scholar
Bret, A. & Hass, F. (2010). Connection between the two branches of the quantum two-stream instability across the k space. Phys. Plasmas 17, 052101.CrossRefGoogle Scholar
Chabrier, G., Douchin, F. & Potekhin, A.Y. (2002). Dense astrophysical plasmas. J. Phys. Condens. Matter 14, 9133.CrossRefGoogle Scholar
Davidson, R.C. (2001). Physics of Nonneutral Plasmas, London: Imperial College Press.CrossRefGoogle Scholar
Davidson, R.C., Hui, B.H. & Kapetanakos, C.A. (1975). Influence of selffields on the filamentation instability in relativistic beam plasma systems. Phys. Fluids 18, 1040.CrossRefGoogle Scholar
Fried, B.D. (1959). Mechanism for instability of transverse plasma waves. Phys. Fluids 2, 337.CrossRefGoogle Scholar
Glenzer, S.H., Landen, O.R., Neumayer, P., Lee, R.W., Widmann, K., Polainae, S.W., Wallce, R.J., Gregori, G., Holl, A., Bornath, T.Thiele, R., Schwarz, V., Kraeft, W.D. & Redmer, R. (2007). Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98, 065002.CrossRefGoogle ScholarPubMed
Hass, F., Bret, A. & Shukla, P.K. (2009). Physical interpretation of the quantum two-stream instability. Phys. Rev. E 80, 066407.CrossRefGoogle Scholar
Haas, F., Garcia, L.G., Goedert, J. & Manfredi, G. (2003 a). Quantum ion-acoustic waves. Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
Haas, F., Manfredi, G. & Feix, M. (2000). Multistream model for quantum plasmas. Phys. Rev. E 62, 2763.CrossRefGoogle ScholarPubMed
Haas, F., Manfredi, G. & Goedert, J. (2003 b). Stability analysis of a three-stream quantum-plasma equilibrium. Braz. J. Phys. 33, 128.CrossRefGoogle Scholar
Hasanbeigi, A., Moghani, S., Azimi, S. & Mehdian, H. (2014). Filamentation instability of electron/ion beams in magnetized plasma waveguide. J. Plasma. Phys. 80, 81.CrossRefGoogle Scholar
Hasanbeigi, A., Saberi, S. & Mehdian, H. (2012). Filamentation instability of quantum magnetized plasma in the presence of an external periodic magnetic field. Phys. Plasmas 19, 042112.CrossRefGoogle Scholar
Hwang, U., Mehdian, H., Willett, J.E. & Aktas, Y.M. (2002). Dispersion relation and growth in a free-electron laser with planar wiggler and in-channel guiding. Phys. Plasmas 9, 1010.CrossRefGoogle Scholar
Jha, P. & Kumar, P. (1998). Dispersion relation and growth in a free-electron laser with ion-channel guiding. Phys. Rev. E 57, 2256.Google Scholar
Jung, Y.D. (2001). Quantum-mechanical effects on electronelectron scattering in dense high-temperature plasmas. Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
Markowich, P.A., Ringhofer, C. & Schmeiser, C. (1990). Semiconductor Equations Springer: ViennaCrossRefGoogle Scholar
Marklund, M. & Shukla, P.K. (2007). Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
Mehdian, H., Hajisharifi, K. & Hasanbeigi, A. (2013 a). Quantum instability of twonon-parallel flows: Parallel wave propagation. Phys. Lett. A 377, 2083.CrossRefGoogle Scholar
Mehdian, H., Hasanbeigi, A. & Hajisharifi, K. (2013 b). The instability of two non-parallel plasma shells in quantum plasma. Astrophys. Space Sci. 346, 421.CrossRefGoogle Scholar
Michno, M.J. & Schlickeiser, R. (2010). On the magnetization of cosmic outflows: Plasma modes and instabilities of unmagnetized plasma beams. ApJ 714, 868.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309.CrossRefGoogle Scholar
Mushtaq, A. & Khan, R. (2008). Linear and nonlinear studies of two-stream instabilities in electronpositronion plasmas with quantum corrections. Phys Scr. 78, 015501.CrossRefGoogle Scholar
Nakar, E., Bret, A. & Milosavljevic, M. (2011). Two-Stream-like instability in Dilute hot relativistic beams and astrophysical relativistic shocks. Astrophys. J. 738, 93.CrossRefGoogle Scholar
Opher, M., Silva, L.O.Dauger, D.E., Decyk, V.K. & Dawson, J.M. (2001). Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes. Phys. Plasmas 8, 2454.CrossRefGoogle Scholar
Ren, H.J., Wu, Z.W., Cao, J.T. & Chu, P.K. (2008). Dispersion of multi-stream instability in quantum magnetized hot plasmas. Phys. Lett. A 372, 2676.CrossRefGoogle Scholar
Sadegzadeh, S., Hasanbeigi, A., Mehdian, H. & Alimohamadi, M. (2012). Linear theory of magnetized ion-channel free-electron laser. Phys. Plasmas 19, 023108.CrossRefGoogle Scholar
Samuelsson, L., Lopez-Monsalvo, C.S., Andersson, N. & Comer, G.L. (2010). Relativistic two-stream instability. Gen. Relativ. Gravit 42, 413.CrossRefGoogle Scholar
Shpatakovskaya, G.V. (2006). Semiclassical model of a one-dimensional quantum dot. J. Exp. Theor. Phys. 102, 466.CrossRefGoogle Scholar
Shukla, P.K. (2006). A new dust mode in quantum plasmas. Phys. Lett. A 352, 242.CrossRefGoogle Scholar
Shukla, P.K., Steno, L. & Bingham, R. (2006). Shielding of a slowly moving test charge in a quantum plasma. Phys. Lett. A 359, 218.CrossRefGoogle Scholar
Thode, L.E. & Sudan, R.N. (1973). Two-stream instability heating of plasmas by relativistic electron beams. Phys. Rev. Lett. 30, 732.CrossRefGoogle Scholar
Wei, L. & Wang, Y.N. (2007). Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Phys. Rev. B. 75, 193407.CrossRefGoogle Scholar
Weibel, E.S. (1959). Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution. Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar