Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:36:32.219Z Has data issue: false hasContentIssue false

Light emission from particle beam induced plasma: An overview

Published online by Cambridge University Press:  13 March 2012

Andreas Ulrich*
Affiliation:
Physik Department E12, Technische Universität München, GarchingGermany
*
Address correspondence and reprint requests to: Andreas Ulrich, Physik Department E12, Technische Universität München, James Franck Str. 1, D 85748 GarchingGermany. E-mail: andreas.ulrich@ph.tum.de

Abstract

Experiments to study the light emission from plasma produced by particle beams are presented. Fundamental aspects in comparison with discharge plasma formation are discussed. It is shown that the formation of excimer molecules is an important process. This paper summarizes various studies of particle beam induced light emission and presents the first results of a direct comparison of light emission induced by electron- and ion beam excitation. Both high energy heavy ion beam and low energy electron beam experiments are described and an overview over applications in the form of light sources, lasers, and ionization devices is given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bethe, H. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie (About the theory of the transit of swift particles through matter). Bremsung, Ann. d. Physik 5, 325400.CrossRefGoogle Scholar
Dandl, T. (2010). Lichtemission elektronenstrahlunterstützter Gasentladungen (Light emission from electron beam sustained discharges). Diplomarbeit. Garching, Germany: Technische Universität München.Google Scholar
Dandl, T. (2011). Electron-beam ignited, high-frequency driven vacuum ultraviolet excimer light source. Euro. Phys. Lett. 95, 53001/1–4.Google Scholar
Gunzer, F., Ulrich, A. & Bäther, W. (2010). A novel non-radioactive electron source for ion mobility spectrometry. Internat. J. Ion Mobility Spectrometry 13, 916.CrossRefGoogle Scholar
Heindl, T., Dandl, T., Fedenev, A., Hofmann, M., Krücken, R., Oberauer, L., Potzel, W., Wieser, J. & Ulrich, A. (2011). Table-top setup for investigating the scintillation properties of liquid argon. J. Instr. 6, P02011.CrossRefGoogle Scholar
Heindl, T., Dandl, T., Hofmann, M., Krücken, R., Oberauer, L., Potzel, W., Wieser, J. & Ulrich, A. (2010). The scintillation of liquid argon. Euro. Phys. Lett. 91, 62002.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Kegl, B. & Collaboration, P.A. (2008). Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Sci. 319, 13361336.Google Scholar
Krötz, W., Ulrich, A., Busch, B., Ribitzki, G. & Wieser, J. (1991). 3rd excimer continuum of argon excited by a heavy-ion beam. Phys. Rev. A 43, 60896094.CrossRefGoogle Scholar
Krötz, W., Ulrich, A., Busch, B., Ribitzki, G. & Wieser, J. (1993). 3rd excimer continua in neon and argon. Laser Part. Beams 11, 521528.CrossRefGoogle Scholar
Morozov, A., Heindl, T., Krücken, R., Ulrich, A. & Wieser, J. (2008a). Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams. J. Appl. Phys. 103, 103301.CrossRefGoogle Scholar
Morozov, A., Heindl, T., Skrobol, C., Wieser, J., Krücken, R. & Ulrich, A. (2008b). Transmission of similar to 10 keV electron beams through thin ceramic foils: Measurements and Monte Carlo simulations of electron energy distribution functions. Euro. Phys. J. D 48, 383388.CrossRefGoogle Scholar
Morozov, A., Heindl, T., Wieser, J., Krücken, R. & Ulrich, A. (2008 c). Influence of pressure on the relative population of the two lowest vibrational levels of the C (3)Pi(u) state of nitrogen for electron beam excitation. Euro. Phys. J. D 46, 5157.CrossRefGoogle Scholar
Morozov, A., Krücken, R., Ulrich, A. & Wieser, J. (2006). Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams. J. Appli. Phys. 100, 093305.Google Scholar
Morozov, A., Krücken, R., Wieser, J. & Ulrich, A. (2005 a). Gas kinetic studies using a table-top setup with electron beam excitation: quenching of molecular nitrogen emission by water vapour. Euro. Phys. J. D 33, 207211.CrossRefGoogle Scholar
Morozov, A., Krücken, R., Ottenthal, T., Ulrich, A. & Wieser, J. (2005 b). Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams. Appl. Phys. Lett. 86, 011502.CrossRefGoogle Scholar
Mühlberger, F., Streibel, T., Wieser, J., Ulrich, A. & Zimmermann, R. (2005 a). Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: Setup and first results on cigarette smoke and human breath. Analy. Chem. 77, 74087414.CrossRefGoogle ScholarPubMed
Mühlberger, F., Wieser, J., Morozov, A., Ulrich, A. & Zimmermann, R (2005 b). Single-photon ionization quadrupole mass spectrometry with an electron beam plumped excimer light source. Analy. Chem. 77, 22182226.CrossRefGoogle Scholar
Mühlberger, F., Wieser, J., Ulrich, A. & Zimmermann, R. (2002). Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis. Analy. Chem. 74, 37903801.CrossRefGoogle ScholarPubMed
Reilly, J.P. (1975). High–power electric discharge lasers/EDLs. Astronau. and Aeronaut. 13 5263.Google Scholar
Pereira, L., Morozov, A., Fraga, M.M., Heindl, T., Krücken, R., Wieser, J. & Ulrich, A. (2010). Temperature dependence of the quenching of N-2 (C (3)Pi(u)) by N-2 (X) and O-2 (X). Euro. Phys.J. D 56, 325334.CrossRefGoogle Scholar
Rhodes, Ch.K. (1984). Excimer Lasers. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Ribitzki, G., Ulrich, A., Busch, B., Krötz, W., Wieser, J. & Murnick, D.E. (1994). Electron-densities and temperatures in a xenon afterglow with heavy-ion excitation. Phys. Rev. E 50, 39733979.CrossRefGoogle Scholar
Salvermoser, M., Ulrich, A. & Wieser, J. (1998). Heavy-ion-beam-induced laser scheme in hydrogenlike He+. Phys. Rev. E 58, 65316538.CrossRefGoogle Scholar
Shaban, Y.R. & Miley, G.H. (1993). Practical, visible wavelength nuclear-pumped laser. Laser Part. Beams 11, 559566.CrossRefGoogle Scholar
Skrobol, C., Heindl, T., Krücken, R., Morozov, A., Steinhübl, R., Wieser, J. & Ulrich, A (2009). A miniature electron beam pumped laser. Euro. Phys. J. D 54, 103109.CrossRefGoogle Scholar
Ulrich, A., Adonin, A., Jacoby, J., Turtikov, V., Fernengel, D., Fertman, A., Golubev, A., Hoffmann, D.H.H., Hug, A., Krücken, R., Kulish, M., Menzel, J., Morozov, A., Ni, P., Nikolaev, D.N., Shilkin, N.S., Ternovoi, V.Y., Udrea, S., Varentsov, D. & Wieser, J. (2006). Excimer laser pumped by an intense, high-energy heavy-ion beam. Phys. Rev. Lett. 97, 153901.CrossRefGoogle ScholarPubMed
Ulrich, A., Bohn, H., Kienle, P. & Perlow, G.J. (1983). Heavy-ion beam pumped He-Ar laser. Appl. Phys. Lett. 42, 782784.CrossRefGoogle Scholar
Ulrich, A., Busch, B., Eylers, H., Krötz, W., Miller, R., Pfaffenberger, R., Ribitzki, G., Wieser, J. & Murnick, D. (1990). Lasers pumped by heavy-ion beams. Laser Part. Beams 8, 659677.CrossRefGoogle Scholar
Ulrich, A., Busch, B., Krötz, W., Ribitzki, G. & Wieser, J. (1993). Heavy-ion beam pumping as a model for nuclear-pumped lasers. Laser Part. Beams 11, 509519.CrossRefGoogle Scholar
Ulrich, A., Hammer, J.W. & Biermayer, W. (1988). Lasers pumped by ion-beams. J. Appl. Phys. 63, 22062211.CrossRefGoogle Scholar
Ulrich, A., Heindl, T., Dandl, T., Krücken, R. & Wieser, J. (2010). Low energy electron beam driven radiolysis. Proceedings Hakone XII. Trenčianske Teplice, Slovakia.Google Scholar
Ulrich, A., Heindl, T., Krücken, R., Morozov, A., Skrobol, C. & Wieser, J. (2009). Electron beam induced light emission. Euro. Phys. J. Appl. Phys. 47, 22815.CrossRefGoogle Scholar
Ulrich, A., Wieser, J., Brunnhuber, A. & Krötz, W. (1994). Heavy-ion beam pumped visible laser. Appl. Phys. Lett. 64, 19021904.CrossRefGoogle Scholar
Undagoitia, T.M., von Feilitzsch, F., Oberauer, L., Potzel, W., Ulrich, A., Winter, J. & Wurm, M. (2009). Fluorescence decay-time constants in organic liquid scintillators. Rev. Sci. Instr. 80, 043301.Google Scholar
Undagoitia, T.M., von Feilitzsch, F., Oberauer, L., Potzel, W., Ulrich, A., Winter, J. & Wurm, M. (2010). Spectroscopy of electron-induced fluorescence in organic liquid scintillators. Euro. Phys. J. D 57, 105110.CrossRefGoogle Scholar
Varentsov, D., Fertman, A.D., Turtikov, V.I., Ulrich, A., Wieser, J., Fortov, V.E., Golubev, A.A., Hoffmann, D.H.H., Hug, A., Kulish, M., Mintsev, V., Ni, P.A., Nikolaev, D., Sharkov, B.Y., Shilkin, N., Ternovoi, V.Y. & Udrea, S. (2008). Transverse optical diagnostics for intense focused heavy ion beams. Contri. Plasma Phys. 48, 586594.CrossRefGoogle Scholar
Wieser, J., Murnick, D.E., Ulrich, A., Huggins, H.A., Liddle, A. & Brown, W.L. (1997). Vacuum ultraviolet rare gas excimer light source. Rev.Sci. Instr. 68, 13601364.CrossRefGoogle Scholar
Wieser, J., Ulrich, A., Fedenev, A. & Salvermoser, M. (2000). Novel pathways to the assignment of the third rare gas excimer continua. Opt. Commun. 173, 233245.CrossRefGoogle Scholar