Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:36:26.810Z Has data issue: false hasContentIssue false

Ionization processes in the ultrashort, intense laser field interaction with large clusters

Published online by Cambridge University Press:  01 March 2004

B. SHOKRI
Affiliation:
Physics Department and Laser Research Institute of Shahid Beheshti University, Evin, Tehran, Iran Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran
A.R. NIKNAM
Affiliation:
Physics Department and Laser Research Institute of Shahid Beheshti University, Evin, Tehran, Iran
M. SMIRNOV
Affiliation:
Moscow Physics and Technology, Dolgoprudny, Moscow Region, Russia

Abstract

Multiple ionization of large clusters when they are irradiated by an intense ultrashort laser pulse is investigated. Different mechanisms, responsible for cluster ionization, are investigated. It is found that the ionization of large clusters, irradiated by a strong intense ultrashort laser pulse, is realized by means of the surface thermoemission.

Type
International Conference on the Frontiers of Plasma Physics and Technology
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bethe, H. & Salpeter, E.F. (1977). Quantum Mechanics of One and Two Electron Atoms. 2nd Ed.New York: Springer.CrossRef
Boehly, T.R., Brown, D.L., Craxton, R.S., Keck, R.L., Knauer, J.P., Kelly, J.H., Kessler, T.J., Kumpan, S.A., Loucks, S.J., Letzring, S.A., Marshall, F.J., McCrory, R.L., Morse, S.F.B., Seka, W., Soures, J.M. & Verdon, C.P. (1997). Initial performance results of the OMECA laser system. Opt. Commun. 133, 495506.CrossRefGoogle Scholar
Brunner, W. (1997). Intra-cluster ionization and x-ray emission. Appy. Phys. B64, 443450.CrossRefGoogle Scholar
Chichkov, B.N., Shumsky, S.A. & Uryupin, A. (1992). Nonstationary electron distribution functions in a laser field. J. Phys. Rev. A 45, 74757479.CrossRefGoogle Scholar
Delone, N.B. & Krainov, V.P. (2000). Multiphoton Processes in Atoms. 2nd ed., Berlin: Springer.CrossRef
Fedorov, M.V. (1997). Atomic and Free Electrons in a Strong Light Field Electrodynamics of Continous Media. Singapore: World Scientific.
Hoyaux, M.F. (1968). Arc Physics. New York: Springer-Verlag.
Krainov, V.P. (2000). Inverse simulated bremsstrahlung of slow electrons under Coulomb scattering. J. Phys B 33, 15851595.CrossRefGoogle Scholar
LaGattuta, K.J. (1998). Multiple ionization of helium clusters by long wavelength laser radiation. Eur. Phys. J D2, 267272.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1982). Statistical Physics., 3rd Ed., Oxford: Pergamon.
Landau, L.D. & Lifshitz, E.M. (1984). Electrodynamics of Continous Media. Oxford: Pergamon.
Last, I. & Joyner, J. (1998). Multielectron ionization of large rare gas clusters. J. Phys. Chem. A 102, 96559659.CrossRefGoogle Scholar
Lezius, M., Dobosz, S., Normand, D. & Schmidt, M. (1998). Explosion dynamics of rare gas clusters in strong laser fields. Phys. Rev. Lett. 80, 261264.CrossRefGoogle Scholar
Neuman, W. (1987). The Mechanism of Thermoemitting Arc Cathode. Berlin: Akademie-Verlag.
Rose-Petruck, C., Schafer, K.J., Wilson, K.R. & Barty, C.P.J. (1997). Ultrafast electron dynamics and inner-shell ionization in laser driven clusters. Phys. Rev. A 55, 11821190.CrossRefGoogle Scholar
Silin, V.P. (1965). Nonlinear high-frequency plasma conductivity. Sov. Phys. JETP 20, 15101516.Google Scholar
Sullivan, A., Bonlie, J., Price, D.F. & White, W.E. (1996). 1.1-J, 120-fs laser system based on nd:glass-pumped Ti:sapphire. Opt. Lett. 21, 603605.Google Scholar
Snyder, E.M., Buzza, S.A. & Castleman, A.W. (1996). Intense field-matter interactions: Multiple ionization of clusters. J. Phys. Rev. Lett. 77, 33473350.CrossRefGoogle Scholar