Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T15:35:45.376Z Has data issue: false hasContentIssue false

Investigation of dust formation in fusion reactors by pulsed plasma accelerator

Published online by Cambridge University Press:  04 December 2017

M.K. Dosbolayev*
Affiliation:
Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
A.U. Utegenov
Affiliation:
Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
A.B. Tazhen
Affiliation:
Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
T.S. Ramazanov
Affiliation:
Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
*
Address correspondence and reprint requests to: Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan. E-mail: merlan@physics.kz

Abstract

In this paper, the results of an experimental investigation of dust formation in a pulsed plasma accelerator, which is formed due to the interaction of a pulsed plasma flow with the candidate material of the thermonuclear reactor, are presented. Dynamic and optical properties of a pulsed plasma flow are considered. The results of the synergetic analysis by the Raman spectrometer of the target surface after irradiation with plasma are also presented. It was revealed that after interaction with the plasma, the surface of the graphite target becomes amorphous. Materials with fractal surfaces, similar to the materials formed in tokamaks under the action of erosion, were obtained experimentally. Using a high-speed camera Phantom v2512 video shooting of the plasma beam was carried out, during which it was revealed that the pulsed plasma beam has a speed of about 23 km/s.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baitinger, E.M., Kovalev, I.N., Vekesser, N.A., Ryabkov, U.I. & Victorov, V.V. (2013). Static analysis of the defect structure of multilayed carbon nanotubes by the method of Raman spectroscopy. Chem. Bull. Kazakh Natnl. Uni. 69, 96102.Google Scholar
Baron-Wiechec, A., Widdowson, A., Ayres, C.F., Coad, P., Hardie, C., Heinola, K. & Matthews, G.F., JET contributors (2015). First dust study in JET with the ITER-like wall: Sampling, analysis and classification. Nucl. Fusion 55, 113033.Google Scholar
Brezinsek, S., Widdowson, A., Mayer, M., Philipps, V., Baron-Wiechec, P., Coenen, J.W., Heinola, K., Huber, A., Likonen, J., Petersson, P., Rubel, M., Stamp, M.F., Borodin, D., Coad, J.P., Carrasco, A.G., Kirschner, A., Krat, S., Krieger, K., Lipschultz, B., Linsmeier, Ch., Matthews, G.F., Schmid, K. & JET contributors (2015). Beryllium migration in JET ITER-like wall plasmas. Nucl. Fusion 55, 063021.Google Scholar
Budaeva, V.P., Martynenko, Yu.V., Grashin, S.A., Giniyatulin, R.N., Arkhipov, I.I., Karpov, A.V., Savrukhin, P.V., Shestakov, E.A., Solomatin, R.Yu., Begrambekov, L.B., Belova, N.E., Fedorovich, S.D., Khimchenko, L.N. & Safronov, V.M. (2016). Tungsten melting and erosion under plasma heat load in tokamak discharges with disruptions. Nucl. Mat. Energy http://dx.doi.org/10.1016/j.nme.2016.11.029. (in press).Google Scholar
Connor, J.W. (1998). Edge-localized modes - physics and theory. Plasma Phys. Control. Fusion 40, 531542.Google Scholar
Dosbolayev, M.K., Utegenov, A.U., Ramazanov, T.S. & Daniyarov, T.T. (2013). Structural and transport properties of dust formation in plasma of noble gases mixture in radio frequency discharge. Contrib. Plasma Phys. 53, 426431.CrossRefGoogle Scholar
Dosbolayev, M.K., Utegenov, A.U., Tazhen, A.B., Ramazanov, T.S. & Gabdullin, M.T. (2016). Dynamic properties of pulsed plasma flow and dust formation in PPA. News of the Natnl. Acad.Sci. Republic Kazakhstan, Physico-Math. Ser. 6, 5966.Google Scholar
Federici, G., Skinner, C.H., Brooks, J.N., Coad, J.P., Grisolia, C., Haasz, A.A., Hassanein, A., Philipps, V., Pitcher, C.S., Roth, J., Wampler, W.R. & Whyte, D.G. (2001). REVIEW: Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion 41, 19671979.CrossRefGoogle Scholar
Ferrero, J.R., Nakamoto, K. & Brown, C.W. (2003) Introductory Raman Spectroscopy. 2nd edn. USA: Elsevier.Google Scholar
Flanagan, J.C., Sertoli, M., Bacharis, M., Matthews, G.F., de Vries, P.C., Widdowson, A., Coffey, I.H., Arnoux, G., Sieglin, B., Brezinsek, S., Coenen, J.W., Marsen, S., Craciunescu, T., Murari, A., Harting, D., Cackett, A., Hodille, E. & JET-EFDA Contributors (2015). Characterising dust in JET with the new ITER-like wall. Plasma Phys. Control. Fusion 57, A71, 014037.Google Scholar
Gorbunov, A.V., Klyuchnikov, L.A. & Korobov, K.V. (2015). Visible range spectrum of the T-10 Tokamak plasma. Issues Atomic Sci. Technol. Ser. Thermonucl. Fusion 2, 6267.Google Scholar
Kovalenko, D.V., Klimov, N.S., Zhitlukhin, A.M., Muzychenko, A.D., Podkovyrov, V.L., Safronov, V.M. & Yaroshevskaya, A.D. (2014). Generation of argon plasma flows and transformation of the flow energy to the radiation at the Qspa-T facility for modeling the radiation loads typical for ITER mitigated disruption. Issues Atomic Sci. Technol. Ser. Thermonucl. Fusion 4, 3948.Google Scholar
Krasheninnikov, S.I. & Soboleva, T.K. (2005). Dynamics and transport of dust particles in tokamak edge plasmas. Plasma Phys. Control. Fusion 47, A339.CrossRefGoogle Scholar
Krauz, V.I., Vojtenko, D.A., Mitrofanov, K.N., Myalton, V.V., Arshba, R.M., Astapenko, G.I., Markoliia, A.I. & Timoshenko, A.P. (2015). Study of parameters of plasma flows and their propagation in a background plasma in the «Plasma Focus» type facilities with different configuration of the discharge system. Issues Atomic Sci. Technol. Ser. Thermonucl. Fusion 38, 1931.Google Scholar
Likonen, J., Coad, J.P., Vainonen-Ahlgren, E., Renvall, T., Hole, D.E., Rubel, M., Widdowson, A. & JET-EFDA Contributors (2007). Structural studies of deposited layers on JET MkII-SRP inner divertor tiles. J. Nucl. Mat. 363–365, 190195.Google Scholar
Memon, N.K., Tse, S.D., Al-Sharab, J.F., Yamaguchi, H., Goncalves, A.M.B., Kear, B.H., Jaluria, Y., Andrei, E.Y. & Chhowalla, M. (2011). Flame synthesis of graphene films in open environments. Carbon 49, 50645070.CrossRefGoogle Scholar
Orazbayev, S.A., Ussenov, Y.A., Ramazanov, T.S., Dosbolayev, M.K. & Utegenov, A.U. (2015). A calculation of the electron temperature of complex plasma of noble gases mixture in CCRF discharge. Contrib. Plasma Phys. 55, 428433.CrossRefGoogle Scholar
Prihodko, N.G., Lesbayev, B.T., Auelkhankyzy, M., Nazhipkyzy, M. & Mansurov, Z.A. (2014). Synthesis of graphene layers in benzene-oxygen flame with low pressure. Chem. Phys. Nanomat. 9, 6873.Google Scholar
Ramazanov, T.S., Dzhumagulova, K.N., Jumabekov, A.N. & Dosbolayev, M.K. (2008). Structural properties of dusty plasma in direct current and radio frequency gas discharges. Phys. Plasmas 15, 053704.CrossRefGoogle Scholar
Reich, S., Thomsen, C. & Maultzsch, J. (2004) Carbon nanotubes: Basic concepts and physical properties. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 215.Google Scholar
Rubel, M., Brezinsek, S., Coenen, J.W., Huber, A., Kirschner, A., Kreter, A., Petersson, P., Philipps, V., Pospieszczyk, A., Schweer, B., Sergienko, G., Tanabe, T., Ueda, Y. & Wienhold, P. (2017). Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak. Matter Radiat. Extremes 2, 87104.Google Scholar
Rubel, M., Cecconello, M.M., Malmberg, J.A., Sergienko, G., Biel, W., Drake, J.R., Hedqvist, A., Huber, A. & Philipps, V. (2001). Dust particles in controlled fusion devices: Morphology, observations in the plasma and influence on the plasma performance. Nucl. Fusion 41, 10871099.Google Scholar
Singheiser, L., Hirai, T., Linke, J., Pintsuk, G. & Rodig, M. (2009). Plasma-facing materials for thermo-nuclear fusion devices. Trans. Indian Inst. Metals 62, 123128.CrossRefGoogle Scholar
Tong, L., Hou, L. & Cao, X. (2015). Study on hydrogen risk induced by dust for fusion device. J. Fusion Energy 34, 18.Google Scholar
Tsytovich, V.N. & Winter, J. (1998). Dust in fusion reactors. Phys. Uspekhi. 41, 899907.Google Scholar
Voronin, A.V., Gusev, V.K., Gerasimenko, Ya.A. & Sudenkov, Yu.V. (2013). Measuring of parameters of plasma flow during the irradiation of materials. J. Tech. Phys. 83, 3642.Google Scholar
Wilson, H.R., Cowley, S.C., Kirk, A. & Snyder, P.B. (2006). Magneto-hydrodynamic stability of the H-mode transport barrier as a model for edge localized modes: An overview. Plasma Phys. Control. Fusion 48, A71.Google Scholar
Winter, J. (2004). Dust in fusion devices – a multi-faceted problem connecting high- and low-temperature plasma physics. Plasma Phys. Control. Fusion 46, 583592.Google Scholar
Zhukeshov, A.M. (2009). Plasma flow formation in a pulse plasma accelerator in continuous filling regime. Plasma Devices Oper. 17, 7381.CrossRefGoogle Scholar