Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:31:58.589Z Has data issue: false hasContentIssue false

Investigation of dominant states for dielectronic recombination in short-pulse laser-produced aluminum plasma

Published online by Cambridge University Press:  27 November 2012

V. Stancalie*
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Department of Lasers, Magurele-Ilfov, Romania
*
Address correspondence and reprint requests to: V. Stancalie, National Institute for Laser, Plasma and Radiation Physics, Laser Department, P.O. Box MG-36, Bucharest 077125, Romania. E-mail: viorica.stancalie@inflpr.ro

Abstract

This paper presents the results of relativistic calculation intended specifically to investigate the dominant states for dielectronic recombination of Li-like into Be-like Al ions in short-pulse laser produced plasmas. The relativistic Dirac R-matrix calculation is performed to output resonance energy levels and rates. The target energies and orbitals are calculated with the extended average level multi-configurational Dirac-Fock method in the general-purpose relativistic atomic structure package. This type of calculation gives a set of 13 bound orbitals that is optimized over all the levels included. The resulting 13 relativistic orbitals produced 74 Jπ levels, all of which are to be used in the close-coupling expansion. To the best of our knowledge, the work reported herein describes for the first time such detailed calculation for this atomic system and the results are relevant to the short-pulse laser produced plasma modeling.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldis, H.A., Campbell, E.M. & Kruer, W.L. (1991). Handbook of Plasma Physics. Vol. 3, pp. 361434. New York: North-Holland.Google Scholar
Campbell, E.M. (1992). The physics of megajoule, large scale, and ultra-fast short-scale laser plasmas. Phys. Fluids B 4, 37813799.CrossRefGoogle Scholar
Carillon, A., Edwards, M.J., Grande, M., Henshaw, M.J.C., Jaegle, P., Jamelot, G., Key, M.H., Kiehn, G.P., Klisnick, A., Lewis, C.L.S., O'neill, D., Pert, G.J., Ramsden, S.A., Regan, C.M.E., Rose, S.J., Smith, R. & Willi, O. (1990). Soft X-ray amplification in aluminium recombining plasma produced from a tin coated fibre. J. Phys. B: At. Mol. Opt. Phys. 23, 147155.CrossRefGoogle Scholar
Chambers, D.M., Pinto, P.A., Hawreliak, J., Al'miev, I.R., Gouveia, A., Sondhauss, P., Wolfrum, E., Wark, J.S., Glenzer, S.H., Lee, R.W., Young, P.E., Renner, O., Marjoribanks, R.S. & Topping, S. (2002). K-shell spectroscopy of an independently diagnosed uniaxially expanding laser-produced aluminum plasma. Phys. Rev. E 66, 026410/16.CrossRefGoogle ScholarPubMed
Chung, H.K., Chen, M., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. Hi. Ener. Density Phys. 1, 312.CrossRefGoogle Scholar
Dyall, K.G., Grant, I.P., Johnson, C.T., Parpia, F.A. & Plummer, E.P. (1989). GRASP: A general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425435.CrossRefGoogle Scholar
Gauthier, J.-C. (1995). Short pulse laser interaction with solid targets. In Laser Interaction with Matter (Rose, S., Ed.). Bristol: Institute of Physics.Google Scholar
Gizzi, L.A., Giulietti, A., Willi, O. & Riley, D. (2000). Soft X-ray emission dynamics in picosececond laser-produced plasmas. Phys. Rev. E 62, 27212727.CrossRefGoogle ScholarPubMed
Kato, T., Yamamoto, N. & Rosmej, F.B. (2004). X-ray spectral diagnostics for satellite lines of H-like Mg ions measured by high resolution spectrometer. Laser Part. Beams 22, 245251.CrossRefGoogle Scholar
Louzon, E., Henis, Z., Levy, I., Hurviz, G., Ehrlich, Y., Franckel, M., Maman, S., Raicher, E., Malka, A., Mandelbaum, P. & Zigler, A. (2011). Density diagnostic of highly ionized samarium laser produced plasma using Ni-like spatially resolved spectra. Laser Part. Beams 29, 6167.CrossRefGoogle Scholar
Magunov, A.I., Batani, D., Faenov, A.Ya., Lucchini, G., Desai, T., Padoan, F., Pikuz, T.A., Skobelev, I.Yu., Canova, F. & Chiodini, N. (2006). Characterization of compact bright soft X-ray source based on ps laser plasma. Appl. Phys. B, 82, 1924.CrossRefGoogle Scholar
Müller, A. (2009). Resonance phenomena in collisions of atomic ions with electrons and photons. Eur. Phys. J. Special Topics 169, 3542.CrossRefGoogle Scholar
Norrington, P.H. & Grant, I.P. (1987). Low-energy electron scattering by Fe XXIII and Fe VII using the Dirac R-matrix method. J. Phys. B: At. Mol. Phys. 20, 48694882.CrossRefGoogle Scholar
Opacity Project Team (1995) Opacity Project (1995), 1, 571.Google Scholar
Phillion, D.H., Campbell, E.M., Estabrook, K.G., Phillips, G.E. & Ze, F. (1982). High-energy electron production by the Raman and 2ωpe instabilities in a 1.064-μm-laser-produced underdense plasma. Phys. Rev. Lett. 49, 14051408.CrossRefGoogle Scholar
Pindzola, M.S., Loch, S.D. & Robicheaux, F. (2011). Dielectronic recombination in C3+ above and below the ionization threshold. Phys. Rev. A 83, 0422705.CrossRefGoogle Scholar
Politov, V.Yu., Potapov, A.V. & Antonova, L.V. (2000). About diagnostics of Z-pinches hot points. Laser Part. Beams 18, 291296.CrossRefGoogle Scholar
Renner, O., Juha, L., Krasa, J., Krousky, E., Pfeifer, M., Velyhan, A., Granja, C., Jakubek, J., Linhart, V., Slavicek, T., Vykydal, Z., Pospisil, S., Kravarik, J., Ullschmied, J., Andreev, A.A., Kampfer, T., Uschmann, I. & Foster, E. (2008). Low-energy nuclear transitions in subrelativistic laser-generated plasmas. Laser Part. Beams 26, 249257.CrossRefGoogle Scholar
Renner, O., Limpouch, J., Krousky, E., Uschmann, I. & Foster, E. (2003). Spectroscopic characterization of plasma densities of laser-irradiated Al foils. J. Quant. Spectrosc. Radiat. Trans. 81, 385394.CrossRefGoogle Scholar
Renner, O., Liska, R. & Rosmej, F.B. (2009). Laser-produced plasma-wall interaction. Laser Part. Beams 27, 725731.CrossRefGoogle Scholar
Robicheaux, F., Gorczyca, T.W. & Pindzola, M.S. (1995). Inclusion of radiation damping in the close coupling equations for electron-atom scattering. Phys. Rev. A. 52, 13191333.CrossRefGoogle ScholarPubMed
Robicheaux, F., Loch, S.D., Pindzola, M.S. & Balance, C.P. (2010). Contribution of near threshold states to recombination in plasma. Phys. Rev. Lett. 105, 233201.CrossRefGoogle Scholar
Rosch, R, Friart, D., Darrigol, M., Chatrieux, L., Zehnter, P., Romary, P. & Chevallier, J.M. (2000). The implosion dynamics and emission characteristics of Al liner-on-wire implosion. Laser Part. Beams 18, 307313.CrossRefGoogle Scholar
Shukla, G. & Khare, A. (2010). Spectroscopic studies of laser ablated ZnO plasma and correlation with pulsed laser deposited ZnO film properties. Laser Part. Beams 28, 149155.CrossRefGoogle Scholar
Stancalie, V. (2005). 1s22pnl (1P0) autoionizing levels in Be-like Al and C ions. Phys. Plasmas 12, 043301.CrossRefGoogle Scholar
Stancalie, V. (2000). Fine structure atomic data calculation for Al XI. Phys. Scrip. 61, 459463.CrossRefGoogle Scholar
Stancalie, V., Pais, V., Totolici, M. & Mihailescu, A. (2007). Forbidden transitions in excitation by proton impact in Li-like Al ions. Laser Part. Beams 25, 277282.CrossRefGoogle Scholar
Stancalie, V. & Pais, V.F. (2006). Effective collision strengths for electron-impact excitation of Al10+. Laser Part. Beams 24, 235240.CrossRefGoogle Scholar
Stancalie, V., Sureau, A., Klisnick, A., Moller, C., Gouennou, H. & Berete, Y. (1995). Influence of dielectronic recombination on gain of X-ray lasers with Li-like ions. In Laser Interaction with Matter (Rose, S., Ed). Bristol: Institute of Physics.Google Scholar
Stehle, C., Gonzalez, M., Kozlova, M., Rus, B., Mocek, T., Acef, O., Colombier, J.P., Lanz, T., Champion, N., Jakubczak, K., Polan, J. & Stupka, M. (2010). Experimental study of radiative shocks at PALS facility. Laser Part. Beams 28, 253261.CrossRefGoogle Scholar
Summers, H.P., Dickson, W.J., O'mullane, M.G., Badnell, N.R., Whiteford, A.D., Brooks, D.H., Lang, J., Loch, S.D. & Griffin, D.C. (2006). Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements. Plasma Phys. Contr. Fusion 48, 263293.CrossRefGoogle Scholar
Yamaguchi, N., Fujikawa, C., Kazunobu, O. & Hara, T. (2002). Production of highly ionized plasma by micro-dot array irradiation and its application to compact X-ray lasers. Laser Part. Beams 20, 7377.CrossRefGoogle Scholar
Zastrau, U., Burian, T., Chalupsky, J., Doppner, T., Dzelzainis, T.W.J., Faustlin, R.R., Fortmann, C., Galtier, E., Glenzer, S.H., Gregory, G., Juha, L., Lee, H.J., Lee, R.W., Lewis, C.L.S., Medvedev, N., Nagler, B., Nelson, A.J., Riley, D., Rosmej, F.B., Toleikis, S., Tschentscher, T., Uschmann, I., Vinko, S.M., Wark, J.S., Whitcher, T. & Förster, E. (2012). XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams 30, 4556.CrossRefGoogle Scholar