Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:26:04.351Z Has data issue: false hasContentIssue false

Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils

Published online by Cambridge University Press:  09 March 2009

C. R. Devore
Affiliation:
Naval Research Laboratory, Washington, D.C.
J. H. Gardner
Affiliation:
Naval Research Laboratory, Washington, D.C.
J. P. Boris
Affiliation:
Naval Research Laboratory, Washington, D.C.
D. Mosher
Affiliation:
Naval Research Laboratory, Washington, D.C.

Abstract

A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion of the study is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. We discus the implications of these results for inertial confinement fusion research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, H. H. & Ziegler, J. F. 1977 Hydrogen Stopping Powers and Ranges in All Elements (Pergamon Press, New York).Google Scholar
Book, D. L., Boris, J. P. & Zaleszak, S. T. 1981 Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, Book, D. L. editor (Springer-Verlag, New York), 29.CrossRefGoogle Scholar
Cooperstein, G., Goldstetn, S. A., Mosher, D., Barker, R. J., Boller, J. R., Colombant, D. G., Probst, A., Meyer, R. A., Oliphant, W. F., Ottinger, P. F., Sandel, F. L., Stephanakis, S. J. & Young, F. C. 1981 Laser Interaction and Related Plasma Phenomena, Schwarz, H. J. et al. editors (Plenum, New York) Vol. 5, p. 105.Google Scholar
Decoste, R., Bodner, S. E., Ripin, B. H., McLean, E. A., Obenschain, S. P. & Armstrong, C. M. 1979 Phys. Rev. Lett. 42, 1673.CrossRefGoogle Scholar
Kihara, T. 1964 J. Phys. Soc. Japan, 19, 108.Google Scholar
Mehlhorn, T. A. 1981 J. Appl. Phys. 52, 6522.Google Scholar
Mosher, D. 1976 Lawrence Berkeley Laboratory Report No. 5543.Google Scholar
Mosher, D., Colombant, D. G., Goldstein, S. A. & Ottinger, P. F. 1981 High-Power Beams 81, Doucet, H. J. & Buzzi, J. M. editors (Ecole Polytechnique, Palaiseau) 1, 19.Google Scholar
Nardi, E., Peleg, E. & Zinamon, Z. 1981 Appl. Phys. Lett. 39, 46.Google Scholar
Tamba, M., Nagata, N., Kawata, S. & Niu, K. 1983 Laser and Particle Beams, 1, 121.Google Scholar
Thompson, S. L. & Lauson, H. S. 1972 Sandia Laboratories Report No. SC-RR-71–0714.Google Scholar
Young, F. C., Mosher, D., Stephanakis, S. J., Goldstein, S. A. & Mehlhorn, T. A. 1982 Phys. Rev. Lett. 49, 549.Google Scholar