Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:44:06.436Z Has data issue: false hasContentIssue false

Hydrodynamic derivation of double layers (DL) and electric fields in plasmas

Published online by Cambridge University Press:  09 March 2009

Heinrich Hora
Affiliation:
Department of Theoretical Physics, The University of New South Wales, Kensington–Sydney, Australia.

Abstract

The hitherto successful hydrodynamic plasma theory needed the simplifying assumption of quasi-neutrality. Earlier known ambipolar fields in plasma surfaces were considered as exceptions and Alfvén's model of a complementary description by plasma currents was criticized. Fields in plasmas were derived from the kinetic theory of turbulence. Following a model for the nonlinear force of laser–plasma interaction, we needed a general description of the plasma without space charge neutrality which succeeded numerically and analytically. High electric fields due to inhomogeneities inside plasmas were derived explaining for the first time quantitatively the reduction of thermal conduction in laser-fusion, the measured inverted double layers including a new type of resonance process, the MeV α-upshift by nonlinear-force driven caviton fields and the radial fields in tokamaks which cause plasma rotation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, H. G. 1979 J. Phys. 40, 67.Google Scholar
Ahlstrom, H. G. 1982 Physics of Laser Fusion II (Nat. Tech. Service, Springfield, Va.).Google Scholar
Alfvén, H. 1942 Nature, 150, 405.CrossRefGoogle Scholar
Alfvén, H. 1981 Cosmic Plasmas (Reidel, Dordrecht).Google Scholar
Basov, N. G. 1978 Panel discussion at Europ. Conf.Laser Interact, with Matter,Moscow, December.Google Scholar
Basov, N. G., Junge, K., Alexandrova, I. V., Brunner, B., Dantlov, A. E., Guter, P., Kalashniko, M. P., Korn, G., Polze, E., MikhailovYu, A. Yu, A., Sklizkov, N. G. & Fedotov, A. I. 1984 Preprint FIAN, Acad. Sci. USSR, No. 90.Google Scholar
Bell, M. G. 1979 Nucl. Fusion, 13, 33.Google Scholar
Boreham, B. W. & Hora, H. 1979a Phys. Rev. Lett. 42, 776.Google Scholar
Boreham, B. W. & Luther–Davies, B. 1979b J. Appl. Phys. 50, 2533.Google Scholar
Briand, J., El Tamer, M., Adrian, V., Gomes, A., Qyemenev, Y., Kieffer, J. C. & Dinquirard, J. P. 1984 to be published.Google Scholar
Chen, F. F. 1975 Plasma Physics p. 66 Plenum, New York.Google Scholar
Clause, P. J. & Wallenborn, J. 1984 Phys. Rev. Lett. 52, 1119.CrossRefGoogle Scholar
Destler, W. W., O'Shea, P. G. & Reiser, M. 1984 Phys. Rev. Lett. 52, 1978.Google Scholar
Le-Ming, Ding, Hai, Tai Wai & Wen, Wang Run 1983 Plasma and Nuclear Fusion in China, 1, 187.Google Scholar
Donaldson, T. P., Lädrach, P. & Wägli, P. 1979 Phys. Lett. 70A, 419.CrossRefGoogle Scholar
Dragila, R. 1984 Laser and Particle Beams, 2 (No. 3).Google Scholar
Eliezer, S., Ghatak, A. K. & Hora, H. 1984 unpublished.Google Scholar
Eliezer, S. & Ludmirsky, A. 1983 Laser and Particle Beams, 1, 251.Google Scholar
Fabre, E. 1978 Panel discussion at Europ. Conf. Laser Interact, with Matter,Moscow, December.Google Scholar
Gazit, Y., Delettrez, J., Bristow, T. C., Entenberg, A. & Soures, J. 1979 Phys. Rev. Lett. 43, 1943.Google Scholar
Gitomer, H. 1983 Private Commun. to S. Eliezer, Nov.Google Scholar
Hora, H., 1969 Phys. Fluids. 72, 181.Google Scholar
Hora, H. 1974 Phys. Fluids, 17, 939.Google Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley, New York).Google Scholar
Hora, H. 1981a Nuovo Cimento, 64B, 1.CrossRefGoogle Scholar
Hora, H. 1982 Opt. Comm. 41, 268.Google Scholar
Hora, H. 1983 Laser and Particle Beams 1, 151.Google Scholar
Hora, H. & Ghatak, A. K. 1984b to be published.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. 1984a to be published.Google Scholar
Hora, H., Lalousis, P. & Jones, D. A. 1983a Phys. Letters, 99A, 89.Google Scholar
Hora, H., Lalousis, P., Ghatak, A. K., Jones, D. A., Tapalaga, S. 1983b, Europhys. Conf. Abstr.(Plasma, Aachen Sept.), 7D, 27.Google Scholar
Hora, H. & Miley, G. H. 1984b Laser Focus, 20 59.Google Scholar
Horton, W. 1981 Phys. Fluids, 24, 1270.Google Scholar
Horton, W. & Lin, J. 1984 Institute of Fusion Studies Newsletter, University of Texas, January, p. 9.Google Scholar
Iizuka, S., Michelsen, P., Rasmussen, J. J., Schrittwieser, R., Natayakama, R., Saeki, K. & Sato, N. 1983 Risø Nat. Lab.Google Scholar
Kentwell, G. & Hora, H. 1980 Plasma Phys. 22, 1043.CrossRefGoogle Scholar
Kindel, J. D. 1984 Private Communication, June.Google Scholar
Kishinevskij, M. E., Lysianskij, P. B., Ryutov, D. D., Stupakov, G. V., Fomel, B. M., Chirikov, B. V. & Shulzhenko, G. I. 1979 Plasma Physics and Controlled Nuclear Fusion Research (Proc. 7th Int. Conf. Innsbruck, 1978) Vol. 2,IAEA.Vienna411.Google Scholar
Kulsrud, R. M. 1983 Phys. Today, 36, 56.Google Scholar
Kuo, S. P. & Schmidt, G. 1983 Phys. Fluids, 26, 252.Google Scholar
Kuroda, H., Masuko, H. & Maerawa, S. 1978 Jap. J. Appl. Phys. 17, 1084.Google Scholar
Lalousis, P. 1983 Ph.D. Thesis, University of New South Wales.Google Scholar
Lalousis, P. & Hora, H. 1983 Laser and Particle Beams 1, 283.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1966 Electrodynamics of Continuous Media (Pergamon, Oxford) p. 242.Google Scholar
Lust, R. 1955, Z. Astrophys. 37, 67.Google Scholar
Luther-Davies, B. 1978 Appl. Phys. Lett. 32, 209.Google Scholar
Luther-Davies, B., Boreham, B. W. & del Pizzo, V. E. 1980 Laser Interaction and Related Plasma Phenom., Schwarz, A. et al. eds. Vol. 5 p. 238, Plenum, New York.Google Scholar
Mavaddat, R. & Ghatak, A. K. 1979 J. Appl. Phys. 31, 3501.Google Scholar
Mendel, C. W. & Ohlsen, J. N. 1975 Phys. Rev. Lett. 34, 859.Google Scholar
Montes, A. & Willi, O. 1982 Plasma Phys. 24, 671.Google Scholar
Pease, R. S. 1957 see Jukes, J. D. J. Fluid Mechanics, 275.Google Scholar
Post, R. 1983, Private Discussions, Sydney December.Google Scholar
Razumova, K. A. 1983 Plasma Physics, 26, 37.Google Scholar
Reiser, M. 1977 Phys. Fluids, 20, 477.Google Scholar
Richardson, M. C. et al. 1984 Laser Interaction and Related Plasma Phenomena, Vol. 6, p. 903, Plenum, New York.Google Scholar
Sato, T. & Okuda, H. 1980 Phys. Rev. Lett. 44, 740.Google Scholar
Schlüter, A. 1950 Z. Naturforsch. 5a, 72.Google Scholar
Sessler, A. M. 1982 Laser Acceleration of Particles,AIP Conf. Proceed. No. 91, p. 10.Google Scholar
Shearer, W. J., Kidder, R. E. & Zink, J. W. 1970 Bull. Am. Phys. Soc. 15, 1483.Google Scholar
Sigmar, D. J., Clarke, J. F., Neidigh, R. V. & Vander. Sluis, K. L. 1974 Phys. Rev. Lett. 33, 1376.Google Scholar
Sodha, M. S. & Subbarao, D. 1979 Appl. Phys. Lett. 35, 851.Google Scholar
Spitzer, L. Jr. 1957 Physics of Fully Ionized Gases, (Wiley, New York).Google Scholar
Willis, W. J. 1977 Laser Interaction and Related Plasma Phenomena, Schwarz, H. et al. eds. Vol. 4B, p. 991, Plenum, New York.Google Scholar
Wobig, H. 1983 Review on W7,Europ. Conf. Fusion, Aachen, September.Google Scholar
Yabe, T., Mima, K., Yoshikawa, K., Takabe, H. & Hamano, M. 1981 Nucl. Fusion 21, 803.CrossRefGoogle Scholar