Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:53:09.589Z Has data issue: false hasContentIssue false

Hot electron diagnostics using X-rays and Čerenkov radiation

Published online by Cambridge University Press:  01 July 2004

J. STEIN
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany Ludwig-Maximilians-Universität München, Garching, Germany
E. FILL
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany
D. HABS
Affiliation:
Ludwig-Maximilians-Universität München, Garching, Germany
G. PRETZLER
Affiliation:
Universität Düsseldorf, Düsseldorf, Germany
K. WITTE
Affiliation:
Max-Planck-Institut für Quantenoptik, Garching, Germany

Abstract

The propagation of laser-generated hot electrons through matter and across narrow vacuum gaps is studied. We use the ATLAS titanium–sapphire laser of Max-Planck-Institut für Quantenoptik to irradiate aluminum and copper foils at intensities of up to 1019 W/cm2, generating electrons with temperatures in the megaelectron volt range. After propagating through the target the electrons are detected by means of visible Čerenkov radiation generated in a dielectric or hard X-rays emitted from an X-ray “fluor.” These diagnostics allow the electrons to be characterized with respect to their energy, number, and directionality. We also investigate the propagation of the hot electrons across narrow vacuum gaps, with a width ranging from 500 μm down to 50 μm. The effect of self-generated fields in preventing electrons from crossing the gap is demonstrated. Implications of these experiments with respect to fast ignitor physics, developing optics for fourth-generation light sources and X-ray lasers are indicated.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, H.-S., Heist, P., Kleinschmidt, J., van Lap, D. & Schröder, T. (1992). Measurement of ultraviolet femtosecond pulses using the optical Kerr effect. Appl. Phys. B 55, 362364.Google Scholar
Batani, D., Giugliano, F., Hall, T. & Koenig, M. (2001). Interferometric measurement of preheating in laser shocks. Phys. Rev. E 64, 047401047405.Google Scholar
Baton, S.D., Santos, J.J., Amiranoff, F., Popescu, H., Gremillet, L., Koenig, M., Martinolli, E., Guilbaud, O., Rousseaus, C., Rabec Le Gloahec, M., Hall, T., Batani, D., Perelli, E., Scianitti, F. & Cowan, T. (2003). Evidence of ultrashort electron bunches in laser-plasma interactions at relativistic intensities. Phys. Rev. Lett. 91, 105001105005.Google Scholar
Baumhacker, H., Böswald, A., Haas, H., Witte, K.J., Andiel, U., Bayer, J., Dong, X., Dreher, M., Eidmann, K., Fischer, M., Hegelich, M., Kaluza, M., Karsch, S., Keller, G., Pretzler, G., Stehbeck, H. & Tsakiris, G. (2002). Advanced Titanium Sapphire Laser ATLAS, Report: Max-Planck-Institut für Quantenoptik.
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, M.E., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser-solid interactions up to 1019 W/cm2. Phys. Plasmas 4, 447457.Google Scholar
Birkhoff, R.D. (1960). The passage of fast electrons through matter. Berlin: Springer.
Borghesi, M., Mackinnon, A.J., Bell, A.R., Malka, G., Vichers, C., Willi, O., Davies, J.R., Pukhov, A. & Meyer-ter-Vehn, J. (1999). Observation of collimated ionization channels in aluminum-coated glass targets irradiated by ultraintense laser pulses. Phys. Rev. Lett. 83, 43094312.Google Scholar
Brandl, F., Pretzler, G., Habs, D. & Fill, E. (2003). Cerenkov radiation diagnostics of hot electrons generated by fs-laser interaction with solid targets. Europhys. Lett. 61, 632638.Google Scholar
Davies, J.R., Bell, A.R. & Tatarakis, M. (1999). Magnetic focusing and trapping of high-intensity laser-generated fast electrons at the rear of solid targets. Phys. Rev. E 59, 60326036.Google Scholar
Eder, D.C., Pretzler, G., Fill, E., Eidmann, K. & Saemann, A. (2000). Spatial characteristics of K-alpha radiation from weakly relativistic laser plasmas. Appy Phys. B 70, 211217.Google Scholar
Feurer, T., Morak, A., Uschmann, I., Ziener, C., Schwoerer, H., Förster, E. & Sauerbrey, R. (2001). An incoherent sub-picosecond X-ray source for time-resolved X-ray-diffraction experiments. Appl. Phys. B 72, 1520.Google Scholar
Fill, E. (2001a). Analytical theory of pulsed relativistic electrons beams entering a vacuum. Phys. Plasmas 8, 46134617.Google Scholar
Fill, E. (2001b). Relativistic electron beams in conducting solids and dense plasmas: Approximate analytical theory. Phys. Plasmas 8, 14411444.Google Scholar
Forslund, D.W., Kindel, J.M. & Lee, K. (1977). Theory of Hot-Electron Spectra at High Laser Intensity. Phys Ref. Lett. 39, 284287.Google Scholar
Gibbon, P. & Förster, E. (1996). Short-pulse laser-plasma interactions. Plasma Phys. Control. Fusion 38, 769793.Google Scholar
Gremillet, L., Amiranoff, F., Baton, S.D., Gauthier, J.-C., Koenig, M., Martinolli, E., Pisani, F., Bonnaud, G., Lebourg, C., Rousseaux, C., Toupin, C., Antonicci, A., Batani, D., Bernardinello, A., Hall, T., Scott, D., Norreys, P., Bandulet, H. & Pepin, H. (1999). Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets. Phys. Rev. Lett. 83, 50155018.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse laser interaction with thin foils. Phys. Rev. Lett. 89, 085002085005.Google Scholar
Honda, M., Meyer-ter-Vehn, J. & Pukhov, A. (2000). Two-dimensional particle-in-cell simulation for magnetized transport of ultra-high relativistic currents in plasma. Phys. Plasmas 7, 13021308.Google Scholar
Jelley, J.V. (1958). Cerenkov Radiation and its Applications. London: Pergamon Press.
Lee, R. & Lampe, M. (1973). Electromagnetic instabilities, filamentation, and focusing of relativistic electron beams. Phys. Rev. Lett. 31, 13901393.Google Scholar
Malka, G. & Miquel, J.L. (1996). Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 7578.Google Scholar
Owens, A., Mineo, T., McCarthy, K.J. & Wells, A. (1994). Event recognition in X-ray CCDs. Nucl. Instrum. Methods Phys. Res. A 346, 353365.Google Scholar
Pretzler, G., Schlegel, T. & Fill, E. (2001). Characterization of electron beam propagation through foils by innershell X-ray spectroscopy. Laser and Particle Beams 19, 9197.Google Scholar
Pretzler, G., Schleges, T., Fill, E. & Eder, D.C. (2000). Hot-electron generation in copper and photopumping of cobalt. Phys. Rev. E 62, 56185623.Google Scholar
Rose-Petruck, C., Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Raksi, F., Squier, J.A., Walker, B.C., Wilson, K.R. & Barty, C.P.J. (1999). Picosecond-milliangström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310312.Google Scholar
Rousse, A., Rischel, G., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Förster, E., Geindre, J.P., Audebert, P., Gauthier, J.C. & Hulin, D. (2001). Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 6568.Google Scholar
Santala, M.I.K., Zepf, M., Watts, I., Beg, F.N., Clark, E., Tatarakis, M., Krushelnik, K., Dangor, A.E., McCanny, T., Spencer, I., Singhal, R.P., Ledingham, K.W.D., Wilks, S.C., Machacek, A.C., Wark, J.S., Allott, R., Clarke, R.J. & Norreys, P.A. (2000). Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Phys. Rev. Lett. 84, 14591462.Google Scholar
Santos, J.J., Amiranoff, F., Baton, S.D., Gremillet, L., Koenig, M., Martinolli, E., Rabec Le Gloahec, M., Rousseaux, C., Batani, D., Bernardinello, A., Greison, G. & Hall, T. (2002). Fast Electron Transport in Ultraintense Laser Pulse Interaction with Solid Targets by Rear-Side Self-Radiation Diagnostice. Phys. Rev. Lett. 89, 025001025004.Google Scholar
Seltzer, S.M. (1991). Electron-Photon Monte Carlo Calculations: The ETRAN Code. Appl. Radiat. Isot. 42, 917941.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Silks, S.C., MacKinnon, A., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from Petawatt-Laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.Google Scholar
Sokolowski-Tinten, K., Blome, C., Blums, J., Cavalleri, A., Dietrich, C., Tarasevitch, A., Uschmann, I., Förster, E., Kammler, M., Horn-von-Hoegen, M. & von der Linde, D. (2003). Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287289.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8385.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, S.D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar