Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T01:33:01.119Z Has data issue: false hasContentIssue false

High-charge divergent electron beam generation from high-intensity laser interaction with a gas-cluster target

Published online by Cambridge University Press:  27 April 2015

P. Koester*
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
G.C. Bussolino
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
G. Cristoforetti
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
A. Faenov
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science (RAS), Moscow, Russia Division for Photon Science and Technology, Institute for Academic Initiatives, Osaka University, Osaka, Japan
A. Giulietti
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy
D. Giulietti
Affiliation:
Dipartimento di Fisica, Università di Pisa, Pisa, Italy INFN Sezione di Pisa, Pisa, Italy
L. Labate
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy INFN Sezione di Pisa, Pisa, Italy
T. Levato
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy Fyzikální ústav AV ČR v.v.i., Praha, Czech Republic
T. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Science (RAS), Moscow, Russia Graduate School of Engineering, Osaka University, Osaka University, Osaka, Japan
L.A. Gizzi
Affiliation:
Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa, Italy INFN Sezione di Pisa, Pisa, Italy
*
Address correspondence and reprint requests to: P. Koester, Consiglio Nazionale delle Ricerche – Istituto Nazionale Ottica, Via Moruzzi 1, 56124 Pisa, Italy. E-mail: petra.koester@ino.it

Abstract

We report on an experimental study on the interaction of a high-contrast 40 fs duration 2 TW laser pulse with an argon-cluster target. A high-charge, homogeneous, large divergence electron beam with moderate kinetic energy (~2 MeV) is observed in the forward direction. The results show that an electron beam with a charge as high as 12 nC can be obtained using a table-top laser system. It was demonstrated that the accelerated electron beam is suitable for a variety of applications such as micro-radiography of thin samples in a wide field of view. It can also be applied for in vitro dosimetry studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdallah, J., Faenov, A.Y., Skobelev, I.Y., Magunov, A.I., Pikuz, T.A., Auguste, T., D'Oliveira, P., Hulin, S. & Monot, P. (2001). Hot-electron influence on the x-ray emission spectra of Ar clusters heated by a high-intensity 60-fs laser pulse. Phys. Rev. A 63, 032706.CrossRefGoogle Scholar
Boldarev, A.S., Gasilov, V.A., Faenov, A.Ya., Fukuda, Y. & Yamakawa, V. (2006). Gas-cluster targets for femtosecond laser interaction: Modeling and optimization. Rev. Sci. Instrum. 77, 083112.CrossRefGoogle Scholar
Bussolino, G., Faenov, A., Giulietti, A., Giulietti, D., Koester, P., Labate, L., Levato, T., Pikuz, T. & Gizzi, L. (2013). Electron radiography using a table top laser-cluster plasma accelerator, J. Phys. D: Appl. Phys. 46, 245501.CrossRefGoogle Scholar
Chair, A.N.R., Blackwell, C.R., Coursey, B.M., Gall, K.P., Galvin, J.M., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E. & Soares, C.G. (1998). Radiochromic film dosimetry: Recommendations of aapm radiation therapy committee task group 55. Med. Phys. 25, 20932115.Google Scholar
Chen, L.M., Yan, W.C., Li, D.Z., Hu, Z.D., Zhang, L., Wang, W.M., Hafz, N., Mao, J.Y., Huang, K., Ma, Y., Zhao, J.R., Ma, J.L., Li, Y.T., Lu, X., Sheng, Z.M., Wei, Z.Y., Gao, J. & Zhang, J. (2013). Bright betatron x-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 3, 19121918.CrossRefGoogle ScholarPubMed
Colgan, J., Abdallah, J. Jr, Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Fortov, V.E., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N. & Yamakawa, K. (2008). The role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target. Laser Par. Beams 26, 8393.CrossRefGoogle Scholar
Colgan, J., Abdallah, J. Jr., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Fukuda, Y., Hayashi, Y., Pirozhkov, A., Kawase, K., Shimomura, T., Kiriyama, H., Kato, Y., Bulanov, S.V. & Kando, M. (2011). Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Phys. 7, 7783.CrossRefGoogle Scholar
Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Giulietti, D., Betti, S., Galimberti, M., Gamucci, A., Giulietti, A., Gizzi, L.A., Labate, L., Levato, T., Tomassini, P., Marques, J.R., Bourgeois, N., Dobosz-Dufrenoy, S., Ceccoti, T., Monot, P., Reau, F., Popoescu, H., D'Oliveira, P., Martin, Ph., Fukuda, Y., Boldarev, A.S., Gasilov, S.V. & Gasilov, V.A. (2008). Non-adiabatic cluster expansion after ultrahsort laser interaction. Laser Part. Beams 26, 6981CrossRefGoogle Scholar
Faenov, A.Y., Pikuz, T.A., Fukuda, Y., Kando, M., Kotaki, H., Homma, T., Kawase, K., Kameshima, T., Pirozkhov, A., Yogo, A., Tampo, M., Mori, M., Sakaki, H., Hayashi, Y., Nakamura, T. Jr, Pikuz, S.A., Skobelev, I.Y., Gasilov, S.V., Giulietti, A., Cecchetti, C.A., Boldarev, A.S., Gasilov, V.A., Magunov, A., Kar, S., Borghesi, M., Bolton, P., Daido, H., Tajima, T., Kato, Y. & Bulanov, S.V. (2009). Submicron ionography of nanostructures using a femtosecond-laser-driven-cluster-based source. Appl. Phys. Lett. 95, 101107.CrossRefGoogle Scholar
Faenov, A.Ya., Pikuz, T.A., Fukuda, Y., Skobelev, I.Yu., Nakamura, T., Bulanov, S.V., Hayashi, Y., Kotaki, H., Pirozhkov, A.S., Kawachi, T., Chen, L.M., Zhang, L., Yan, W.C., Yuan, D.W., Mao, J.Y., Wang, Z.H., Fortov, V.E., Kato, Y. & Kando, M. (2013). Generation of quantum beams in large clusters irradiated by super-intense, high – contrast femtosecond laser pulses. Contrib. Plasma Phys. 53, 148160.CrossRefGoogle Scholar
Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Pikuz, S.A., Fortov, V.E., Fukuda, Y., Hayashi, Y., Pirozhkov, A., Kotaki, H., Shimomura, T., Kiriyama, H., Kanazawa, S., Kato, Y., Colgan, J., Abdallah, J. & Kando, M. (2012). X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultraintense femtosecond laser pulse irradiation. Laser Part. Beams 30, 481488.CrossRefGoogle Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Hayashi, Y., Homma, T., Inoue, N., Kando, M., Kanazawa, S., Kiriyama, H., Kondo, S., Kotaki, H., Masuda, S., Mori, M., Yamazaki, A., Yamakawa, K., Echkina, E.Yu., Inovenkov, I.N., Koga, J. & Bulanov, S.V. (2007). Utrarelativistic electron generation during the intense, ultrashort laser pulse interaction with clusters. Phys. Lett. A 363, 130.CrossRefGoogle Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Abdallah, J. Jr., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X-rays and energetic ions from micron-sized Ar clusters irradiated by ultrafast, high intensity laser pulses. Laser Part. Beams 22, 215220.CrossRefGoogle Scholar
Fukuda, Y., Faenov, A.Y., Tampo, M., Pikuz, T.A., Nakamura, T., Kando, M., Hayashi, Y., Yogo, A., Sakaki, H., Kameshima, T., Pirozhkov, A.S., Ogura, K., Mori, M., Esirkepov, T., Koga, J., Boldarev, A.S., Gasilov, V.A., Magunov, A.I., Kodama, R., Bolton, P., Kato, Y., Tajima, T., Daido, H. & Bulanov, S. (2009). Energy increase in multi-MeV ion acceleration in the interaction of short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002.CrossRefGoogle ScholarPubMed
Gahn, C., Tsakiris, G.D., Pukhov, A., Ter Vehn, J.M., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeVelectron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.CrossRefGoogle Scholar
Gavrilenko, V.P., Faenov, A.Ya., Magunov, A.I., Skobelev, I.Yu., Pikuz, T.A., Kim, K.Y. & Milchberg, H.M. (2006). Observation of modulations in Lyman-alfa profiles of multicharged ions in clusters irradiated by fs laser pulses: Effect of a dynamic electric field. Phys. Rev. A 73, 013203.CrossRefGoogle Scholar
Giulietti, D. & Labate, L. (2010). Laser Plasma Acceleration and Related Electromagnetic sources. In Progress in ultrafast intense laser science (Yamanouchi, K., Giulietti, A. & Ledingham, K., Eds.), Vol. 5, Chap. 9, pp. 165185. Heidelberg: Springer.CrossRefGoogle Scholar
Hayashi, Y., Pirozhkov, A.S., Kando, M., Fukuda, Y., Faenov, A., Kawase, K., Pikuz, T., Nakamura, T., Kiriyama, H., Okada, H. & Bulanov, S.V. (2011). Efficient generation of Xe K-shell x rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36, 16141616.CrossRefGoogle ScholarPubMed
Jinno, S., Fukuda, Y., Sakaki, H., Yogo, A., Kanasaki, M., Kondo, K., Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Boldarev, A.S. & Gasilov, V. (2013). Mie scattering from submicron-sized CO2 clusters formed in a supersonic expansion of a gas mixture. Opt. Express 21, 2065620674.CrossRefGoogle Scholar
Kim, K.Y., Kumarappan, V., Milchberg, H., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2006). X-Ray spectroscopy of ~1 cm channels produced by self-focusing pulse propagation in elongated cluster jets. Phys. Rev. E 78, 066463.Google Scholar
Kishimoto, Y., Masaki, T. & Tajima, T. (2002). High energy ions and nuclear fusion in laser–cluster interaction. Phys. Plasmas 9, 589.CrossRefGoogle Scholar
Kishimoto, Y. & Tajima, T. (2000). Strong coupling between Clusters and Radiation. In High-field science (Tajima, T., Mima, K. & Baldis, H., Eds.), Chap. 3, pp. 8396. New York: Springer.CrossRefGoogle Scholar
Kugland, N.L., Constantin, C.G., Neumayer, P., Chung, H.-K., Collette, A., Dewald, E.L., Froula, D.H., Glenzer, S.H., Kemp, A., Kritcher, A.L., Ross, J.S. & Niemann, C. (2008b). High Kα x-ray conversion efficiency from extended source gas jet targets irradiated by ultra-short laser pulses. Appl. Phys. Lett. 92, 241504.CrossRefGoogle Scholar
Kugland, N.L., Neumayer, P., Döppner, T., Chung, H.-K., Constantin, C.G., Girard, F., Glenzer, S.H., Kemp, A. & Niemann, C. (2008a). High contrast Kr gas jet Kα x-ray source for high energy density physics experiments. Rev. Sci. Instrum. 79, 10E917.CrossRefGoogle Scholar
Magunov, A.I., Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Yu. (2003). X-ray spectra of fast ions from clusters by ultra-short laser pulses. Laser Part. Beams 21, 7379.CrossRefGoogle Scholar
Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Faenov, A.Ya., Blasco, F., Dorchies, F., Caillaud, T., Bonte, K., Stenz, C., Salin, F., Loboda, P.A., Litvinenko, I.A., Popova, V.V., Baidin, G.V., Abdallah, J. Jr & Junkel-Vives, G.C. (2001). Influence of ultrashort laser pulse duration on the X-ray emission spectrum of plasma produced in cluster target. JETP Lett. 74, 375379.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense utrashort laser pulse. Science 298, 1596.CrossRefGoogle Scholar
Mangles, S., Walton, B., And, Z.N., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Mangles, S.P.D., Genoud, G., Bloom, M.S., Burza, M., Najmudin, Z., Persson, A., Svensson, K., Thomas, A.G.R. & Wahlström, C.G. (2012). Self-injection threshold in self-guided laser wake-field accelerators. Phys. Rev. ST Accel. Beams 15, 011302.CrossRefGoogle Scholar
Merrill, F., Harmon, F., Hunt, A., Mariam, F., Morley, K., Morris, C., Saunders, A. & Schwartz, C. (2007). Electron radiography. Nucl. Instrum. Methods B 261, 382386.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A., Clayton, C., Marsh, K., Joshi, C., Malka, V., Darrow, C., Danson, C., Neely, D. & Walsh, F. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606.CrossRefGoogle Scholar
Najmudin, Z., Krushelnick, K., Clark, E., Mangles, S., Walton, B., Dangor, A., Fritzler, S., Malka, V., Lefebvre, E., Gordon, D., Tsung, F. & Joshi, C. (2003). Self-modulated wakefield and forced laser wakefield acceleration of electrons. Phys. Plasmas 10, 2071.CrossRefGoogle Scholar
Sakabe, S., Shimizu, S., Hashida, M., Sato, F., Tsuyukushi, T., Nishihara, K., Okihara, S., Kagawa, T., Izawa, Y., Imasaki, K. & Iida, T. (2004). Generation of high-energy protons from the Coulomb explosion of hydrogen clusters by intense femtosecond laser pulses. Phys. Rev. A 69, 023203.CrossRefGoogle Scholar
Schumaker, W., Nakanii, N., McGuffey, C., Zulick, C., Chyvkov, V., Dollar, F., Habara, H., Kalintchenko, G., Maksimchuk, A., Tanaka, K.A., Thomas, A.G.R., Yanovsky, V. & Krushelnick, K. (2013). Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. Phys. Rev. Lett. 110, 015003.CrossRefGoogle ScholarPubMed
Serbanescu, C. & Fedosejevs, R. (2006). Electron radiography using hot electron jets from sub-millijoule femtosecond laser pulses. Appl. Phys. B 83, 521525.CrossRefGoogle Scholar
Sherrill, M.E., Abdallah, J. Jr, Csanak, G., Dodd, E.S., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Yamakawa, K., Faenov, A.Ya., Magnov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2006). Spectroscopic characterization of an ultrashort laser driven Ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys. Rev. E 73, 066404.CrossRefGoogle ScholarPubMed
Tajima, T. & Dawson, J. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Tajima, T., Kishimoto, Y. & Downer, M.C. (1999). Optical properties of cluster plasma. Phys. Plasmas 6, 3759.CrossRefGoogle Scholar
Zhang, L., Chen, L.-M., Yuan, D.-W., Yan, W.-C., Wang, Z.-H., Liu, C.H., Shen, Z.H.-W., Faenov, A., Pikuz, T., Skobelev, I., Gasilov, V., Boldarev, A., Mao, J.-Y., Li, Y.-T., Dong, Q.-L., Lu, X., Ma, J.-L., Wang, W.-M., Sheng, Z.H.-M. & Zhang, J. (2011). Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19, 2581225822.CrossRefGoogle ScholarPubMed
Zhang, L., Chen, L.M., Wang, W.M., Yan, W.C., Yuan, D.W., Mao, J.Y., Wang, Z.H., Liu, C., Shen, Z.W., Faenov, A., Pikuz, T., Li, D.Z., Li, Y.T., Dong, Q.L., Lu, X., Ma, J.L., Wei, Z.Y., Sheng, Z.M. & Zhang, J. (2012). Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100, 014104.CrossRefGoogle Scholar