Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T00:56:53.020Z Has data issue: false hasContentIssue false

Femtosecond laser ablation of brass: A study of surface morphology and ablation rate

Published online by Cambridge University Press:  10 July 2012

Mohamed E. Shaheen*
Affiliation:
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada Department of Physics, Faculty of Sciences, Tanta University, Tanta, Egypt
Brian J. Fryer
Affiliation:
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario, Canada
*
Address correspondence and reprint requests to: Mohamed E. Shaheen, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, CanadaN9B 3P4. E-mail: mshaheen@uwindsor.ca

Abstract

The interaction of near infrared femtosecond laser pulses with a Cu based alloy (brass) in ambient air at atmospheric pressure and under different laser conditions was investigated. The effects of laser fluence and number of pulses on surface morphology and ablation rate were studied using scanning electron microscopy (SEM) and optical microscopy. Ablation rates were found to rapidly increase from 83 to 604 nm/pulse in the fluence range 1.14–12.21 J/cm2. At fluence >12.21 J/cm2, ablation rates increased slowly to a maximum (607 nm/pulse at 19.14 J/cm2), and then decreased at fluence higher than 20.47 J/cm2 to 564 nm/pulse at 24.89 J/cm2. Large amounts of ablated material in a form of agglomerated fine particles were observed around the ablation craters as the number of laser pulses and fluence increased. The study of surface morphology shows reduced thermal effects with femtosecond laser ablation in comparison to nanosecond laser ablation at low fluence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anwar, M.S., Latif, A., Iqbal, M., Rafique, M.S., Khaleeq-UR-Rahman, M. & Siddique, S. (2006). Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams 24, 347353.CrossRefGoogle Scholar
Batani, D. (2010). Short-pulse laser ablation of materials at high intensities: Influence of plasma effects. Laser Part. Beams 28, 235244.CrossRefGoogle Scholar
Bonse, J., Baudach, S., Kruger, J., Kautek, W. & Lenzner, M. (2002). Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl. Phys. A Mater. Sci. Process. 74, 1925.CrossRefGoogle Scholar
Bonse, J., Wrobel, J.M., Kruger, J. & Kautek, W. (2001). Ultrashort pulse laser ablation of indium phosphide in air. Appl. Phys. A Mater. Sci. Process.72, 8994.CrossRefGoogle Scholar
Bulgakova, N. & Bourakov, I. (2002). Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt. Appl. Surf. Sci. 197–198, 4045.Google Scholar
Choi, T.Y. & Grigoropoulos, C.P. (2002). Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon. J. Appl. Phys. 92, 49184925.CrossRefGoogle Scholar
Couillard, M., Borowiec, A., Haugen, H.K., Preston, J.S., Griswold, E.M. & Botton, G.A. (2007). Subsurface modifications in indium phosphide induced by single and multiple femtosecond laser pulses: a study on the formation of periodic ripples. J. Appl. Phys. 101, 033519, doi:10.1063/1.2407259.CrossRefGoogle Scholar
Coyne, E., Magee, J.P., Mannion, P., O'Connor, G.M. & Glynn, T.J. (2005). STEM (scanning transmission electron microscopy) analysis of femtosecond laser pulse induced damage to bulk silicon. Appl. Phys. A Mater. Sci. Process. 81, 371378.CrossRefGoogle Scholar
Di Bernardo, A., Courtois, C., Cros, B., Matthieussent, G., Batani, D., Desai, T., Strati, F. & Lucchini, G. (2003). High-intensity ultrashort laser-induced ablation ofstainless steel foil targets in the presence of ambient gas. Laser Part. Beams 21, 5964.CrossRefGoogle Scholar
Fang, R., Zhang, D., Wei, H., Li, Z., Yang, F. & Gao, Y. (2010). Improved two-temperature model and its application in femtosecond laser ablation of metal target. Laser Part. Beams 28, 157164.CrossRefGoogle Scholar
Freydier, R., Candaudap, F., Poitrasson, F., Arbouet, A. & Chatel, B.Dupre, B. (2008). Evaluation of infrared femtosecond laser ablation for the analysis of geomaterials by ICP-MS. J. Anal. At. Spectrom. 23, 702710.CrossRefGoogle Scholar
Fernandez, B., Claverie, F., Pecheyran, C. & Donard, O.F.X. (2007). Direct analysis of solid samples by fs-LA-ICP-MS. Trends Anal. Chem. 26, 951966.CrossRefGoogle Scholar
Horn, I. & von Blanckenburg, F. (2007). Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 62, 410422.CrossRefGoogle Scholar
Ikehata, K., Notsu, K. & Hirata, T. (2008). In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LAMC-ICP-MS. J. Anal. At. Spectrom. 23, 10031008.CrossRefGoogle Scholar
Ji, L.F., Li, L., Devlin, H., Liu, Z., Whitehead, D., Wang, Z.B., Wang, W. & Jiao, J. (2011). Ti: sapphire femtosecond laser interaction with human dental dentine. Sur. Eng. 27, 749753.CrossRefGoogle ScholarPubMed
Kanavin, A.P., Smetanin, I.V., Isakov, V.A. & Afanasiev, Y.V. (1998). Heat transport in metals irradiated by ultrashort laser pulses. Phys. Rev. B. 57, 14698.CrossRefGoogle Scholar
Kumar, A. & Verma, A.L. (2011). Nonlinear absorption of intense short pulse laser over a metal surface embedded with nanoparticles. Laser Part. Beams 29, 333338.CrossRefGoogle Scholar
Latif, A., Anwar, M.S., Aleem, M.A., Rafique, M.S. & Khaleeq-Ur-Rahman, M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.CrossRefGoogle Scholar
Lenzner, M., Kruger, J., Sartania, S., Cheng, Z., Spielmann, C., Mourou, G., Kautek, W. & Krausz, F. (1998). Femtosecond Optical Breakdown in Dielectrics. Phys. Rev. Let. 80, 40764079.CrossRefGoogle Scholar
Liu, Y.F. & Niemz, M. (2007). Ablation of femural bone with femtosecond laser pulses – a feasibility study. Lasers Med. Sci. 22, 171174.CrossRefGoogle ScholarPubMed
Menendez-Manjon, A., Barcikowski, S., Shafeev, G.A., Mazhukin, V.I. & Chichkov, B.N. (2010). Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation. Laser Part. Beams 28, 4552.CrossRefGoogle Scholar
Neev, J., Da Silva, L.B., Feit, M.D, Perry, M.D., Rubenchik, A.M. & Stuart, B.C. (1996). Ultrashort pulse laser system for hard dental tissue procedures. Lasers in dentistry II: San Jose CA, 28–29 January 1996. Proc. SPIE-Int. Soc. Opt. Eng. 210221.Google Scholar
Niemz, M.H., Kasenbacher, A., Strassl, M., Backer, A., Beyertt, A., Nickel, D. & Giesen, A. (2004). Tooth ablation using a CPA-free thin disk femtosecond laser system. Appl. Phys. B Lasers Opt. Print. 79, 269271.CrossRefGoogle Scholar
Niemz, M.H. (1998). Ultrashort laser pulses in dentistry: advantages and limitations. Applications of ultrashort-pulse lasers in medicine and biology: San Jose CA, 29–30 January 1998. Proc. SPIE-Int. Soc. Opt. Eng. 8491.Google Scholar
Pecholt, B., Vendan, M., Dong, Y. & Molian, P. (2008). Ultrafast laser micromachining of 3C-SiC thin filmsfor MEMS device fabrication. Int. J. Adv. Manuf. Technol. 39, 239250.CrossRefGoogle Scholar
Perez, D. & Lewis, L. (2002). Ablation of solids under femtosecond laser pulses. Phys. Rev.Lett. 89, 25504.CrossRefGoogle ScholarPubMed
Perrie, W., Gilla, M., Robinson, B., Foxa, P. & O'Neil, W. (2004). Femtosecond laser micro-structuring of aluminum under helium. Appl. Surf. Sci. 230, 5059.CrossRefGoogle Scholar
Poitrasson, F., Mao, X.L., Mao, S.S., Freydier, R. & Russo, R.E. (2003). Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Anal. Chem. 75, 61846190.CrossRefGoogle ScholarPubMed
Robinson, G.M. & Jackson, M.J. (2006). Femtosecond laser machiningof aluminum surfaces under controlled gas atmospheres. J. Mater. Eng. Perform. 15, 155159.CrossRefGoogle Scholar
Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Förster, E., Geindre, J., Audebert, P., Gauthier, J. & Hulin, D. (2001). Non-thermal melting in semiconductors measuredat femtosecond resolution. Nature 410, 6568.CrossRefGoogle Scholar
Russo, R.E., Mao, X. & Mao, S.S. (2002). The physics of laser ablation in micro chemical analysis. Anal. Chem. 74, 70A77A.CrossRefGoogle Scholar
Shaheen, M.E. & Fryer, B.J. (2011). A simple solution to expanding available reference materials for Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis: Applications to sedimentary materials, Spectrochim. Acta Part B 66, 627636.CrossRefGoogle Scholar
Shank, C., Yen, R. & Hirlimann, C. (1983). Femtosecond-time-resolvedsurface structural dynamics of optically excited silicon. Phys. Rev. Lett. 51, 900902.CrossRefGoogle Scholar
Stasic, J., Gakovic, B., Krmpot, A., Pavlovic, V., Trtica, M. & Jelenkovic, B. (2009). Nickel-based super-alloy Inconel 600 morphological modifications by high repetition rate femtosecondTi:sapphire laser. Laser Part. Beams 27, 8590.CrossRefGoogle Scholar
Stoian, R., Ashkenasi, D., Rosenfeld, A. & Campbell, E. (2000). Coulomb explosion in ultrashort pulsed laser ablation of Al203. Phys. Rev. B 62, 1316713172.CrossRefGoogle Scholar
Sun, J. & Longtin, J.P. (2001). Inert gas beam delivery for ultrafast laser micromachining at ambient pressure. Appl. Surf.Sci. 89, 82198223.Google Scholar
Tamura, H., Kohama, T., Kondo, K. & Yoshida, M. (2001). Femtosecond laser-induced spallation in aluminum. J. Appl. Phys. 89, 35203522.CrossRefGoogle Scholar
Zheng, H.Y., Deng, Y.Z., Vatsya, S.R. & Nikumb, S.K. (2007). A study of balancing the competing effects of ultrashort laser induced plasma for optimal laser machining. App. Sur. Sci. 253, 34083412.CrossRefGoogle Scholar
Zhu, X., Naumov, A.Yu., Villeneuve, D.M. & Corkum, P.B. (1999). Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses. Appl. Phys. A 69, S367S371.CrossRefGoogle Scholar