Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T16:59:04.546Z Has data issue: false hasContentIssue false

Excitation of electron plasma wave by filamented laser beam and third-harmonic generation in magneto plasma

Published online by Cambridge University Press:  14 May 2015

Prerana Sharma*
Affiliation:
Physics Department, Ujjain Engineering College, Ujjain, M. P., India
*
Address correspondence and reprint requests to: Prerana Sharma, Physics Department, Ujjain Engineering College, Ujjain 456010, M. P., India. E-mail: preranaiitd@rediffmail.com

Abstract

The combined effects of filamentation and magnetic field on the third-harmonic generation of electromagnetic beams have been investigated considering extended paraxial rays in magneto plasma. The analysis is done using eikonal method in which eikonal and other relevant quantities are extended up to fourth power of r. The time scale of laser beam is chosen such that the relativistic mass variation of electron becomes dominated source of nonlinearity in refractive index. The expression for coupling between ultra-intense laser beam and electron plasma wave due to relativistic nonlinearity has been deduced. Interaction of the seed plasma wave with the incident filamented laser beam excites the plasma wave and generates third harmonics. The expressions for plasma wave power and third-harmonic power have been derived. The effect of the magnetic field on the power of plasma wave and the third-harmonic power has been carried out. The role of magnetic field has been found to decrease the power of plasma wave and so as the power of third harmonic. Our results can be helpful for various laser plasma diagnostics experiments in which magnetic field present externally or generated spontaneously in the high-power laser–plasma interaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. – Usp. 10, 609636.CrossRefGoogle Scholar
Baiwen, L.I., Ishiguro, S., Škoric, M.M., Takamaru, H. & Sato, T. (2004). Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma. Laser Part. Beams 22, 307314.CrossRefGoogle Scholar
Banerjee, S., Umstadter, D., Shah, R., Valenzuela, A. & Maksimchuk, A. (2002). High harmonic generation in relativistic laser–plasma interactiona. Phys. Plasmas 9, 2393.CrossRefGoogle Scholar
Bawaaneh, M.S., Assayed, G., Said, M.R., Al-Awfi, S. (2014). Convective instability of laser filamentation in magnetized plasma. Can. J. Phys. 92, 504.CrossRefGoogle Scholar
Bingham, R., de Angelis, U., Amin, M.R., Cairns, R.A. & McNamara, B. (1992). Relativistic Langmuir waves generated by ultra-short pulse lasers. Plasma Phys. Control. Fusion 34, 557.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., McPherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 2309.CrossRefGoogle ScholarPubMed
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004). Progress in direct-drive fusion studies for the Laser Mégajoule. Laser Part. Beams 22, 109114.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebrave, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium–tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, K.M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C.B., Shadwick, B.A., Wurtele, J.S. & Leemans, W.P. (2000). Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 3081.CrossRefGoogle ScholarPubMed
Esarey, E., Ting, A., & Sprangle, P. (1988). Relativistic focusing and beat wave phase velocity control in the plasma beat wave accelerator. Appl. Phys. Lett. 53, 1266.CrossRefGoogle Scholar
Esarey, E., Ting, A., Sprangle, P., Umstadter, D. & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95.CrossRefGoogle Scholar
Gao, W., Lu, Z.W., Wang, S.Y., He, W.M. & Hasi, W.L.J. (2010). Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy. Laser Part. Beams 28, 01, 179184.CrossRefGoogle Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/γ-ray sources. Laser Part. Beams 23, 309314.CrossRefGoogle Scholar
Gupta, M.K., Sharma, R.P., Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra-relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Gupta, R., Rafat, M. & Sharma, R.P. (2011). Effect of relativistic self-focusing on plasma wave excitation by a hollow Gaussian beam. J. Plasma Phys. 77, 777.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Hora, H. & Hoffmann, D.H.H. (2008). Using petawatt laser pulses of picosecond duration for detailed dignostics of creation and decay processes of B-mesons in the LHC. Laser Part. Beams 26, 503505.CrossRefGoogle Scholar
Kahaly, S., Monchocé, S., Vincenti, H., Dzelzainis, T., Dromey, B., Zepf, M., Martin, Ph. & Quéré, F. (2013). Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110, 175001.CrossRefGoogle ScholarPubMed
Kaur, S., Sharma, A.K. & Salih, H.A. (2009). Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional magnetoplasma. Phys. Plasmas 16, 042509.CrossRefGoogle Scholar
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185–90.CrossRefGoogle Scholar
Kothari, N.C. & Kobayashi, T. (1983). Growth rate and diameter of filaments in self-focusing. Media Phys. Rev. Lett. 50, 160.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interaction. New York: Addison–Wesley Publishing Company, p. 93.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., GAmmino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distribution of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.CrossRefGoogle Scholar
Malekynia, B., Ghoranneviss, M., Hora, H. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks’. Laser Part. Beams 27, 233–41.CrossRefGoogle Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.CrossRefGoogle Scholar
Meyer, J. & Zhu, Y. (1987). Second harmonic emission from an under dense laser produced plasma. Phys. Fluids 30, 890.CrossRefGoogle Scholar
Mori, W.B., Decker, C.D. & Leemans, W.P. (1993). Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas. IEEE Trans. Plasma Sci. 21, 110.CrossRefGoogle Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets'. Laser Part. Beams 26, 207–12.CrossRefGoogle Scholar
Niknam, A.R., Rastbood, E., Bafandeh, F. & Khorashadizadeh, S.M. (2014). Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma. Phys. Plasmas 21, 042307.CrossRefGoogle Scholar
Nuzzo, S., Zarcone, M., Ferrante, G. & Basile, S. (2000). A simple model of high harmonic generation in a plasma. Laser Part. Beams 18, 483487.CrossRefGoogle Scholar
Osman, F., Castillo, R. & Hora, H. (1999). Relativistic and ponderomotive self-focusing at laser–plasma interaction. J. Plasma Phys. 61, 263.CrossRefGoogle Scholar
Purohit, G., Sharma, P., & Sharma, R.P. (2012). Filamentation of laser beam and suppression of stimulated Raman scattering due to localization of electron plasma wave. J. Plasma Phys. 78, 5563.CrossRefGoogle Scholar
Salih, H.A., Sharma, R.P. & Rafat, M. (2004). Plasma wave and second-harmonic generation of intense laser beams due to relativistic effects. Phys. Plasmas 11, 6.CrossRefGoogle Scholar
Sodha, M.S., Verma, M.P. & Sharma, A. (2005). Phase matching for third-harmonic generation in collisional magneto plasmas. Phys. Plasmas 12, 112302.CrossRefGoogle Scholar
Sharma, R.P., Bhardwaj, A.K. & Sharma, P. (2012). Study of stimulated Brillouin scattering in extended paraxial region Laser Part. Beams 30, 207213.CrossRefGoogle Scholar
Sharma, R.P. & Sharma, P. (2009). Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction. Laser Part. Beams 27, 157.CrossRefGoogle Scholar
Sharma, R.P., Sharma, P., Chauhan, P.K. (2007). Effect of laser beam filamentation on plasma wave localization and electron heating. Phys. Plasmas 14, 103112.CrossRefGoogle Scholar
Shi, Y.J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.CrossRefGoogle Scholar
Shukla, P.K. (1990). Relativistic instabilities of large amplitude waves in plasmas. Phys. Scr. T30, 50.CrossRefGoogle Scholar
Sprangle, P., Tang, Cha-Mei & Esarey, E. (1987). Relativistic Self-Focusing of Short-Pulse Radiation Beams in Plasmas. IEEE Trans. Plasma Sci. 15, 145.CrossRefGoogle Scholar
Sprangle, P., Ting, A. & Tang, C.M. (1987). Radiation focusing and guiding with application to the free electron laser. Phys. Rev. Lett. 59, 202.CrossRefGoogle Scholar
Stancalie, V. (2009). Theoretical calculation of atomic data for plasma spectroscopy. Laser Part. Beams 27, 345–54.CrossRefGoogle Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Verma, K., Sajal, V., Varshney, P., Kumar, R. & Sharma, N.K. (2014). Stimulated Raman scattering of beat wave of two counter-propagating X-mode lasers in a magnetized plasma. Phys. Plasmas 21, 022104.CrossRefGoogle Scholar
Vincenti, M.A., de Ceglia, D., Haus, J.W. & Scalora, M. (2013). Harmonic generation in multiresonant plasma films. Phys. Rev. A 88, 043812.CrossRefGoogle Scholar
Walia, K. & Singh, A. (2014). Effect of self-focusing of gaussian laser beam on second harmonic generation in Relativistic plasma. J. Fusion Energy 33, 83.CrossRefGoogle Scholar
Zeng, G., Shen, B., Yu, W. & Xu, Z. (1996). Relativistic harmonic generation excited in the ultrashort laser pulse regime. Phys. Plasmas 3, 4220.CrossRefGoogle Scholar