Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T12:51:54.308Z Has data issue: false hasContentIssue false

Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing

Published online by Cambridge University Press:  05 December 2005

HUI CHEN
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California
SCOTT C. WILKS
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California

Abstract

It is shown that the effective hot electron temperature, Thot, associated with the energetic electrons produced during the interaction of an ultra-intense laser with thin solid targets is dependent on the thickness of the target. We report the first direct experimental observations of electron energy spectra obtained from laser-solid interactions that indicates the reflexing of electrons in thin targets results in higher electron temperatures than those obtained in thick target interactions. This can occur for targets whose thickness, xt, is less than about half the range of an electron at the energy associated with the initial effective electron temperature, provided the laser pulse length is at least cτp > 2xt. A simple theoretical model that demonstrates the physical mechanism behind this enhanced heating is presented and the results of computer simulations are used to verify the model.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adumi, K., Tanaka, K.A., Matsuoka, T., Kurahashi, T., Yabuuchi, T., Kitagawa, Y., Kodama, R., Sawai, K., Suzuki, K., Okabe, K., Sera, T., Norimatsu, T. & Izawa, Y. (2004). Characterization of preplasma produced by an ultrahigh intensity laser system. Phys. Plasmas 11, 37213725.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J., Hora, H., Kraska, J., Laska, L. & Rohlena, K. (2004a). Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction. Plasma Phys. Cont. Fusion 46, B541B555.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004b). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.Google Scholar
Bauer, D. (2003). Plasma formation through field ionization in intense laser-matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Bonlie, J.D., Patterson, F., Price, D., White, B. & Springer, P. (2000). Production of > 1021W/cm2 from a large-aperture Ti : sapphire laser system. Appl. Phys. B-Lasers Optics 70, S155S160.Google Scholar
Chen, H., Patel, P.K., Price, D.F., Young, B.K., Springer, P.T., Berry, R., Booth, R., Bruns, C. & Nelson, D. (2003). A compact electron spectrometer for hot electron measurement in pulsed laser solid interaction. Rev. Sci. Instr. 74, 15511553.Google Scholar
Davies, J.R. (2002). Proton acceleration by fast electrons in laser-solid interactions. Laser Part. Beams 20, 243253.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Forslund, D.W., Kindel, J.M. & Lee, K. (1977). Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett. 39, 284288.Google Scholar
Fuchs, J., Adam, J.C., Amiranoff, F., Baton, S.D., Gallant, P., Gremillet, L., Heron, A., Kieffer, J.C., Laval, G., Malka, G., Miguel, J.L., Mora, P., Pepin, H., & Rousseaux, C. (1998). Transmission through highly overdense plasma slabs with a subpicosecond relativistic laser pulse. Phys. Rev. Lett. 80, 23262329.Google Scholar
Glinsky, M.E., Mason, R.J. & Tabak, M. (1993). Relativistic electrons and ion heating. Bull. Am. Phys. Soc. 38, 2080.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu & Osman, F. (2006). Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Laser Part. Beams. In press.
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, K. & Rohlena, J. (2002). Effects of ps and ns. laser pulses for giant ion source. Optics Commun. 207, 333338.Google Scholar
Hora, H., Miley, H.G. & Osman, F. (2005). Boltzmann equilibrium of endothermic heavy-nuclear synthesis in the Universe and a quark relation to the magic numbers. Astrophys. Space Sci. 293, in press.Google Scholar
Hora, H., Gu, Min, Eliezer, S., Lalousis, P., Pease, R.S. & Szichman, H. (1989). Surface waves in laser produced plasma. IEEE Trans. Plasma Sci. PS-17, 284294.Google Scholar
Itatani, J., Faure, J., Nantel, M., Mourou, G. & Watanabe, S. (1998). Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 148, 70.Google Scholar
Kaluza, M., Scheiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.Google Scholar
Kruer, W.L. & Wilks, S.C. (1992). Kinetic simulations of ultra-intense laser plasma interactions. Plasma Phys. Contr. Fusion 34, 20612064.Google Scholar
Langdon, A.B. & Lasinski, B. (1976). Relativistic and electromagnetic particle-in-cell simulations. In Methods in Computational Physics (Killen, J., Alder, B., Fernbach, S. & Rotenberg, M., Eds.) New York: Academic Press.
Lefebvre, E. & Bonnaud, G. (1997). Nonlinear electron heating in ultrahigh-intensity-laser-plasma interaction. Phys. Rev. E 55, 10111014.Google Scholar
Liang, E.P., Wilks, S.C. & Tabak, M. (1998). Pair production by ultraintense lasers. Phys. Rev. Lett. 81, 48874890.Google Scholar
MacKinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88 (21).Google Scholar
Mulser, P. & Bauer, D. (2004a). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and perspectives. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Schneider, R. (2004b). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Osman, F., Hora, H., Cang, Y., Evans, P., Cao, L.H., Liu, H., He, X.T., Badziak, J., Parys, A.B., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Krasla, J., Laska, J., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high gain laser fusion. Laser Part. Beams 22, 8388.Google Scholar
Osman, F., Hora, H. & Ghahramany, N. (2005). Debye sheath mechanism at laser plasma interaction and generalization to nuclear forces and quark-gluon plasma. Laser Part. Beams 23, 461466.Google Scholar
Pegoraro, F., Atzeni, S., Borgehesi, M., Bulanov, S., Esirepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Pommier, L. & Lefebvre, E. (2003). Simulations of energetic emission in laser-plasma interaction. Laser Part. Beams 21, 573581.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.W., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, K., Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High-energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B-Lasers Optics 74, 207215.Google Scholar
Shen, B.F. & Meyer-Ter-Vehn, J. (2001). High-density (> 10(23)/cm3) relativistic electron plasma confined between two laser pulses in a thin foil. Phys. Plasmas 8, 10031010.Google Scholar
Silva, L.O., Marti, M., Davies, J.R., Fonseca, R.A., Ren, C., Tsung, F.S. & Mori, W.B. (2004). Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92 (1).Google Scholar
Stephens, R.B., Snavely, R.A., Aglitskiy, Y., Amiranoff, F., Andersen, C., Batani, D., Baton, S.D., Cowan, T. Freeman, R.R., Hall, T., Hatchett, S.P., Hill, J.M., Key, M.H., King, J.A., Koch, J.A., Koenig, M., MacKinnon, A.J., Lancaster, K.L., Martinolli, E., Norreys, P., Perelli-Cippo, E., Le Gloahec, M.R., Rousseaux, C., Santos, J.J., &Scianitti, F. (2004). K-alpha fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys. Rev. E 69 (6).Google Scholar
Tabak, M., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Wilks, S.C. & Kruer, W.L. (1997). Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quan. Electr. 33, 19541968.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser-pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hackett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavelly, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar