Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:59:03.010Z Has data issue: false hasContentIssue false

Electron-positron pair production observed from laser-induced processes in ultra-dense deuterium D(-1)

Published online by Cambridge University Press:  29 August 2014

Frans Olofson
Affiliation:
Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
Leif Holmlid*
Affiliation:
Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
*
Address correspondence and reprint requests to: Leif Holmlid, Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden. E-mail: holmlid@chem.gu.se

Abstract

Laser-induced fusion in ultra-dense deuterium D(-1) is reported in several studies from our group, using ns- and ps-pulsed lasers. The ejection of ultra-dense hydrogen particles with thermal distributions and energy up to 20 MeV u−1 was studied previously by time-of-flight measurements. The investigations of the new processes continue now by studying the interaction of these particles with metal surfaces. In the present experiments, such particles penetrate in two steps through 1 mm of metal and reach three levels of collectors at distances up to 1 m. Only the fastest particles penetrate and move to the next level. The thermal time-of-flight distributions together with tests with strong magnetic fields exclude electrons as the particles observed. The sign of the signals to the metal collectors depends on the bias (negative bias gives positive signal and conversely) while the time variations of the signals for positive and negative bias are similar. The rapid variation of the signals indicates electrons and positrons ejected from the collectors, thus lepton-pair production. An increase in bias up to ± 400 V increases the peak signal up to 1 A with no observed limiting. A thick metal plate removes slow particles and most gamma photons. The number of lepton-pairs produced is > 4 × 1012 sr−1 in the forward direction per laser shot.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, P.U. & Holmlid, L. (2009). Ultra-dense deuterium: A possible nuclear fuel for inertial confinement fusion (ICF). Phys. Lett. A 373, 30673070.Google Scholar
Andersson, P.U. & Holmlid, L. (2010). Deuteron energy of 15 MK in a surface phase of ultra-dense deuterium without plasma formation: Temperature of the interior of the Sun. Phys. Lett. A 374, 28562860.Google Scholar
Andersson, P.U. & Holmlid, L. (2011). Superfluid ultra-dense deuterium D(-1) at room temperature. Phys. Lett. A 375, 13441347.Google Scholar
Andersson, P.U. & Holmlid, L. (2012 a). Cluster ions DN+ ejected from dense and ultra-dense deuterium by Coulomb explosions: Fragment rotation and D+ backscattering from ultra-dense clusters in the surface phase. Int. J. Mass Spectrom. 310, 3243.Google Scholar
Andersson, P.U. & Holmlid, L. (2012 b). Fusion generated fast particles by laser impact on ultra-dense deuterium: Rapid variation with laser intensity. J. Fusion Ener. 31, 249256.Google Scholar
Andersson, P.U. & Holmlid, L. (2012 c). Fast atoms and negative chain cluster fragments from laser-induced Coulomb explosions in a super-fluid film of ultra-dense deuterium D(-1). Phys. Scr. 86, 045601.CrossRefGoogle Scholar
Andersson, P.U., Holmlid, L. & Fuelling, S.R. (2012). Search for superconductivity in ultra-dense deuterium D(-1) at room temperature: Depletion of D(-1) at field strength >0.05 T. J. Supercond. Novel Magn. 25, 873882.CrossRefGoogle Scholar
Andersson, P.U., Lönn, B. & Holmlid, L. (2011). Efficient source for the production of ultra-dense deuterium D(-1) for laser induced fusion (ICF). Rev. Sci. Instrum. 82, 013503.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 a). Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? Int. J. Hydr. Energy 34, 487495.Google Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 b). High-energy Coulomb explosions in ultra-dense deuterium: Time-of-flight mass spectrometry with variable energy and flight length. Int. J. Mass Spectrom. 282, 7076.Google Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 a). Laser-driven nuclear fusion D + D in ultra-dense deuterium: MeV particles formed without ignition. Laser Part. Beams 28, 313317.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 b). Laser-induced variable pulse-power TOF-MS and neutral time-of-flight studies of ultra-dense deuterium. Phys. Scripta 81, 045601.Google Scholar
Chen, H., Wilks, S.C., Bonlie, J.D., Liang, E.P., Myatt, J., Price, D. F., Meyerhofer, D.D. & Beiersdorfer, P. (2009). Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001.Google Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.Google Scholar
Dutton, J., Llewellyn Jones, F., Rees, W.D. & Williams, E.M. (1966). The motion of slow positive ions in gases. IV. Drift and diffusion of ions in hydrogen. Phil. Trans. Roc. Soc. London A 259 339354.Google Scholar
Holmlid, L. (2011). High-charge Coulomb explosions of clusters in ultra-dense deuterium D(-1). Int. J. Mass Spectrom. 304, 5156.CrossRefGoogle Scholar
Holmlid, L. (2012 a). MeV particles from laser-initiated processes in ultra-dense deuterium D(-1). Eur. Phys. J. A 48, 11.Google Scholar
Holmlid, L. (2012 b). Experimental studies and observations of clusters of Rydberg matter and its extreme forms. J. Cluster Sci. 23, 534.CrossRefGoogle Scholar
Holmlid, L. (2012 c). Deuterium clusters Dn and mixed K-D and D-H clusters of Rydberg Matter: High temperatures and strong coupling to ultra-dense deuterium. J. Cluster Sci. 23, 95114.Google Scholar
Holmlid, L. (2013 a). Laser-induced fusion in ultra-dense deuterium D(-1): Optimizing MeV particle ejection by carrier material selection. Nucl. Instr. Meth. B 296, 6671.CrossRefGoogle Scholar
Holmlid, L. (2013 b). Direct observation of particles with energy >10 MeV/u from laser-induced processes with energy gain in ultra-dense deuterium. Laser Part. Beams 31, 715722.CrossRefGoogle Scholar
Holmlid, L. (2013 c). Laser-mass spectrometry study of ultra-dense protium p(-1) with variable time-of-flight energy and flight length, Int. J. Mass Spectrom. 351, 6168.Google Scholar
Holmlid, L. (2013 d). Excitation levels in ultra-dense hydrogen p(-1) and d(-1) clusters: Structure of spin-based Rydberg matter. Int. J. Mass Spectrom. 352, 18.CrossRefGoogle Scholar
Holmlid, L. (2013 e). Two-collector timing of 3-14 MeV/u particles from laser-induced processes in ultra-dense deuterium. Int. J. Modern Phys. E 22, 1350089.Google Scholar
Holmlid, L. (2014). Ultra-dense hydrogen H(-1) as the cause of instabilities in laser compression-based nuclear fusion. J. Fusion Energy 33, 348350. doi:10.1007/s10894-014-9681-x.Google Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultra-high-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.Google Scholar
Hora, H., Osman, F., Castillo, R., Collins, M., Stait-Gardener, T., Chan, W.-K., Hölss, M., Scheid, W., Wang, J.-X. & Ho, Y.-K. (2002). Laser-generated pair production and Hawking-Unruh radiation. Laser Part. Beams 20, 7986.CrossRefGoogle Scholar
Hora, H., Castillo, R., Stait-Gardner, T., Hoffmann, D.H.H., Miley, G.H. & Lalousis, P. (2011). Laser Acceleration up to Black Hole Values and B-Meson Decay. J. Proc. R. Soc. New South Wales (Australia) 144, 2733.Google Scholar
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Hopkins, L.F.B., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–9.CrossRefGoogle Scholar
L'Annunziata, M.F. (2007). Radioactivity. Introduction and History. Amsterdam: Elsevier.Google Scholar
Lerche, R.A., Cable, M.D. & Dendooven, P.G. (1996). ICF burn-history measurements using 17-MeV fusion gamma rays. AIP Conf. Proc. 369, 527–32.Google Scholar
Lipson, A., Heuser, B.J., Castano, C., Miley, G., Lyakhov, B. & Mitin, A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen-cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507.CrossRefGoogle Scholar
Mack, J.M., Berggren, R.R., Caldwell, S.E., Christensen, C.R., Evans, S.C., Faulkner, J.R. Jr., Griffith, R.L., Hale, G.M., King, R.S., Lash, D.K., Lerche, R.A., Oertel, J.A., Pacheco, D.M. & Young, C.S. (2006). Remarks on detecting high-energy deuterium-tritium fusion gamma rays using a gas Cherenkov detector. Radiat. Phys. Chem. 75, 551–6.Google Scholar
Meima, G.R. & Menon, P.G. (2001). Catalyst deactivation phenomena in styrene production. Appl. Catal. A 212, 239245.Google Scholar
Miley, G.H., Yang, X., Hora, H., Flippo, K., Gaillard, S., Offermann, D. & Cort Gautier, D. (2010). Advances in proposed D-Cluster inertial confinement fusion target. J. Phys.: Conf. Series 244, 032036.Google Scholar
Muhler, M., Schlögl, R. & Ertl, G. (1992). The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. 2. Surface chemistry of the active phase. J. Catal. 138, 413444.CrossRefGoogle Scholar
Myatt, J., Delettrez, J.A., Maximov, A.V., Meyerhofer, D.D., Short, R.W., Stoeckl, C. & Storm, M. (2009). Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E 79, 066409.Google Scholar
Olofson, F. & Holmlid, L. (2012 a). Detection of MeV particles from ultra-dense protium p(-1): laser-initiated self-compression from p(1). Nucl. Instr. Meth. B 278, 3441.Google Scholar
Olofson, F. & Holmlid, L. (2012 b). Superfluid ultra-dense deuterium D(-1) on polymer surfaces: structure and density changes at a polymer-metal boundary. J. Appl. Phys. 111, 123502.CrossRefGoogle Scholar
Olofson, F., Ehn, A., Bood, J. & Holmlid, L. (2012). Large intensities of MeV particles and strong charge ejections from laserinduced fusion in ultra-dense deuterium. 39th EPS Conference & 16th Int. Congress on Plasma Physics; P1.105.Google Scholar
Winterberg, F. (2010 a). Ultradense deuterium. J. Fusion Energ. 29, 317321.Google Scholar
Winterberg, F. (2010 b). Ultra-dense deuterium and cold fusion claims. Phys. Lett. A 374, 27662771.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target. Phys. Plasmas 18, 032703.CrossRefGoogle Scholar