Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T23:19:09.306Z Has data issue: false hasContentIssue false

Electrical characterization of atmospheric pressure dielectric barrier discharge-based cold plasma jet using ring electrode configuration

Published online by Cambridge University Press:  09 September 2016

G. Divya Deepak*
Affiliation:
Department of Nuclear Science and Technology, Mody University of Science and Technology, Lakshmangarh, Rajasthan 332311, India
N.K. Joshi
Affiliation:
Department of Nuclear Science and Technology, Mody University of Science and Technology, Lakshmangarh, Rajasthan 332311, India
U. Pal
Affiliation:
Plasma Devices Laboratory, MWT Area, CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031, India
R. Prakash
Affiliation:
Plasma Devices Laboratory, MWT Area, CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031, India
*
Address correspondence and reprint requests to: G. Divya Deepak, Department of Nuclear Science and Technology, Mody University of Science and Technology, Lakshmangarh, Rajasthan 332311, India. E-mail: divyadeepak77@gmail.com

Abstract

In this study, an atmospheric pressure cold plasma jet has been generated based on dielectric barrier discharge plasma. The double ring electrode configuration is used and analysis has been performed subjected to wide range of supply frequencies up to 25 kHz and supply voltage up to 6 kV. The electrical characterization of the plasma jet has been carried out using a high voltage probe. The V-I characteristics of the developed cold plasma jet have been studied and the consumption of the power has been analyzed at various input combinations of supply frequency and applied voltage. Consequently, the supply voltage and supply frequency are optimized with respect to the discharge current and jet length for optimum power consumption. The peak power consumed for glow discharge operation has been found to be 1.27 W in the optimized configuration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bibinov, N., Dudek, Engemann, J. & Awakowicz, P. (2007). Characterization of an atmospheric pressure dc plasma jet. J. Phys. D 40, 736742.Google Scholar
Eliasson, B. & Kogelschatz, U. (1991). Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci. 19, 10631077.CrossRefGoogle Scholar
Girard-Lauriault, P.-L., Mwale, F., Iordanova, M., Demers, C., Desjardins, P. & Wertheimer, M.R. (2005). Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. In Plasma Processes and Polymers, (WILEY-VCH Verlag, Ed.), Vol. 2, pp. 263270. Weinheim: Wiley.Google Scholar
Jeong, J.Y., Babayan, S.E., Tu, V.J., Park, J., Hicks, R.F. & Selwyn, G.S. (1998). Etching materials with an atmospheric-pressure plasma jet. Plasma Source Sci. Technol. 7, 282285.CrossRefGoogle Scholar
Jiang, N., Ji, A. & Cao, Z. (2009). Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behaviour, and its formation mechanism. J. Appl. Phys. 106, 013308.Google Scholar
Joaquin, J.C., Abramzon, N., Bray, J. & Brelles-Mariño, G. (2006). Biofilm destruction by RF high-pressure cold plasma jet. IEEE Trans. Plasma Sci. 34, 13041329.Google Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Borodziuk, S., Chodukowski, T., Parys, P., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2010). Interaction of two plasma jets produced successively from Cu target. Laser Part. Beams 28, 497504.CrossRefGoogle Scholar
Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Trans. Plasma Sci. 30, 14091415.CrossRefGoogle Scholar
Laroussi, M. & Lu, X.P. (2005). Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 87, 113902.Google Scholar
Li, L., Liu, C., Zhang, X., Wu, G., Zhang, M., Fu, R.K.Y. & Chu, P.K. (2014). Plasma-target surface interaction during non-equilibrium plasma irradiation at atmospheric pressure: Generation of dusty plasma. Laser Part. Beams 32, 6978.CrossRefGoogle Scholar
Liu, & Neiger, M. (2003). Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage. J. Appl. Phys. 36, 16321638.Google Scholar
Lu, X.P. & Laroussi, M. (2006). Dynamics of an atmospheric pressure plasma plume generated by sub-microsecond voltage pulses. J. Appl. Phys. 100, 063302.Google Scholar
Pal, U.N., Sharma, A.K., Soni, J.S., Sonu, KR, Khatun, H., Kumar, M., Meena, B.L., Tyagi, M.S., Lee, B-J., Iberler, M., Jacoby, J. & Frank, K. (2009). Electrical modelling approach for discharge analysis of a coaxial DBD tube filled with argon. J. Appl. Phys. 42, 045213.Google Scholar
Park, J. Schutze, A., Jeong, J.Y., Babayan, S.E., Selwyn, G.S. & Hicks, R.F. (1998). The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 26, 16851694.Google Scholar
Sanchez-Gonzalez, R., Kim, Y., Rosocha, L.A. & Abbate, S. (2007). Methane and ethane decomposition in an atmospheric-pressure plasma jet. IEEE Trans. Plasma Sci. 35, 6691676.Google Scholar
Stevens, G.C. & Shenton, M.J. (2001). Surface modification of polymer surfaces: Atmospheric plasma versus vacuum plasma treatments. J. Phys. D 34, 27612768.Google Scholar
Teschke, M., Kedzierski, J., Finantu-Dinu, E.G., Korzec, D. & Engemann, J. (2005). High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Transactions on Plasma Science 33, 310311.CrossRefGoogle Scholar
Xiong, Q., Lu, X., Ostrikov, K., Xiong, Z., Xian, Y., Zhou, F., Zou, C., Hu, J., Gong, W. & Jiang, Z. (2009). Length control of He atmospheric plasma jet plumes: Effects of discharge parameters and ambient air. Phys. Plasmas 16, 043505.CrossRefGoogle Scholar
Xu, G.-M., Ma, Y. & Zhang, G.-J. (2008). DBD plasma jet in atmospheric pressure argon. IEEE Trans. Plasma Sci. 36, 13521353.Google Scholar