Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:44:33.902Z Has data issue: false hasContentIssue false

Effects of CH foam preplasma on fast ignition

Published online by Cambridge University Press:  13 March 2012

M. Hata*
Affiliation:
Department of Physics, Nagoya University, Nagoya, Aichi, 464-8601, Japan
H. Sakagami
Affiliation:
Fundamental Physics Simulation Research Division, National Institute for Fusion Science, Toki, Gifu, 509-5292, Japan
A. Sunahara
Affiliation:
Institute for Laser Technology, Suita, Osaka, 565-0871, Japan
T. Johzaki
Affiliation:
Institute for Laser Technology, Suita, Osaka, 565-0871, Japan
H. Nagatomo
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
*
Address correspondence and reprint requests to: M Hata, Department of Physics, Nagoya University, Nagoya, Aichi, 464-8601, Japan. E-mail: hata.masayasu@nifs.ac.jp

Abstract

Creation of a preformed plasma (preplasma) by heating laser prepulse is crucial to fast ignition. Because it is difficult to control the prepulse and preplasma, control of fast electron beam generation by low-density foam was recently reported. However, this simulation study ignored the foam preplasma. Therefore, we calculated foam preplasma formation using a hydrodynamic code and investigated the effects of the preplasma on fast ignition by using integrated simulations, including radiation hydrodynamic, Particle-In-Cell (PIC) and Fokker–Planck simulations. We conclude that the average core temperature decreased by approximately 10% in the integrated simulations of the foam preplasma case.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H. & The Firex Project. (2006). Present status of the FIREX programme for the demonstration of ignition and burn. Plasma Phys. Contr. Fusion, 48, B267B275.CrossRefGoogle Scholar
Beg, F., Bell, A., Dangor, A., Danson, C., Fews, A., Glinsky, M., Hammel, B., Lee, P., Norreys, P. & Tatarakis, M. (1997). A study of picosecond laser-solid interactions up to 1019 W/cm2. Phys. Plasmas 4, 447.CrossRefGoogle Scholar
Cai, H., Mima, K., Sunahara, A., Johzaki, T., Nagatomo, H., Zhu, S. & He, X. (2010). Prepulse effects on the generation of high energy electrons in fast ignition scheme. Phys. Plasmas 17, 023106.CrossRefGoogle Scholar
Charakhch’yan, A., Krasyuk, I., Pashinin, P. & Semenov, A. (1999). On mechanism of deuterium heating in laser experiments with conical targets. Laser Part. Beams 17, 749752.CrossRefGoogle Scholar
Chrisman, B., Sentoku, Y. & Kemp, A.J. (2008). Intensity scaling of hot electron energy coupling in cone-guided fast ignition. Phys. Plasmas 15, 056309.CrossRefGoogle Scholar
Johzaki, T., Mima, K., Nakao, Y., Yokota, T. & Sumita, H. (2003). Analysis of core plasma heating by relativistic electrons in fast ignition. Fusion Sci. Technol. 43, 428436.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Kemp, A.J., Sentoku, Y. & Tabak, M. (2008). Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. Lett. 101, 075004.CrossRefGoogle ScholarPubMed
Key, M. (2007). Status of and prospects for the fast ignition inertial fusion concept. Phys. plasmas 14, 055502.CrossRefGoogle Scholar
Kodama, R., Norreys, P., Mima, K., Dangor, A., Evans, R., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K., Lancaster, K., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P., Sakabe, S., Tanaka, K., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Nuclear fusion: fast heating scalable to laser fusion ignition. Nat. 418, 933934.CrossRefGoogle ScholarPubMed
Mima, K., Sunahara, A., Shiraga, H., Nishimura, H., Azechi, H., Nakamura, T., Johzaki, T., Nagatomo, H., Garcia, C. & Velarde, P. (2010). Firex project and effects of self-generated electric and magnetic fields on electron-driven fast ignition. Plasma Phys. Contr. Fusion 52, 124047.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF—impact fast ignition. Nucl. Fusion 46, 99.CrossRefGoogle Scholar
Nagatomo, H., Ohnishi, N., Mima, K., Sawada, K., Nishihara, K. & Takabe, H. (2002). Analysis of hydrodynamic instabilities in implosion using high-accuracy integrated implosion code. Proc. 2nd Int. on Inertial Fusion Sciences and Applications, 140142.Google Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Norreys, P., Scott, R., Lancaster, K., Green, J., Robinson, A., Sherlock, M., Evans, R., Haines, M., Kar, S., Zepf, M., Key, M., King, J., Ma, T., Yabuuchi, T., Wei, M., Beg, F., Nilson, P., Theobald, W., Stephens, R., Valente, J., Davies, J., Takeda, K., Azechi, H., Nakatsutsumi, M., Tanimoto, T., Kodama, R. & Tanaka, K. (2009). Recent fast electron energy transport experiments relevant to fast ignition inertial fusion. Nucl. Fusion 49, 104023.CrossRefGoogle Scholar
Renard-Le Galloudec, N. & D'Humieres, E. (2010). New micro-cones targets can efficiently produce higher energy and lower divergence particle beams. Laser Part. Beams 28, 513519.CrossRefGoogle Scholar
Roth, M., Cowan, T., Key, M., Hatchett, S., Brown, C., Fountain, W., Johnson, J., Pennington, D., Snavely, R., Wilks, S., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S., Campbell, E., Perry, M. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2009). Generation control of fast electron beam by low-density foam for FIREX-I. Nucl. Fusion 49, 075026.CrossRefGoogle Scholar
Sakagami, H. & Mima, K. (2002). Interconnection hydro and PIC codes for fast ignition simulations. Proc. 2nd Int. on Inertial Fusion Sciences and Applications, 380383.Google Scholar
Sakagami, H. & Mima, K. (2004). Interconnection hydro and PIC codes for fast ignition simulations. Laser Part. Beams 22, 4144.CrossRefGoogle Scholar
Sunahara, A., Nishihara, K. & Sasaki, A. (2008). Optimization of extreme ultraviolet emission from laser-produced tin plasmas based on radiation hydrodynamics simulations. Plasma Fusion Res. 3, 43.CrossRefGoogle Scholar
Tabak, M., Clark, D., Hatchett, S., Key, M., Lasinski, B., Snavely, R., Wilks, S., Town, R., Stephens, R., Campbell, E., Kodama, R., Mima, K., Tanaka, K., Atzeni, S. & Freeman, R. (2005). Review of progress in fast ignition. Phys. Plasmas 12, 057305.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M., Kruer, W., Wilks, S., Gampbell, E., Perry, M. & Mason, R. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar