Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:36:31.809Z Has data issue: false hasContentIssue false

Effects of beam temperature and plasma frequency on the radiation growth rate of a FEL with a laser wiggler

Published online by Cambridge University Press:  07 March 2017

N. Esmaeildoost
Affiliation:
Department of Physics, University of Guilan, Rasht 41335-1914, Iran
S. Jafari*
Affiliation:
Department of Physics, University of Guilan, Rasht 41335-1914, Iran
*
Address correspondence and reprint requests to: S. Jafari, Department of Physics, University of Guilan, 41335-1914 Rasht, Guilan, Iran. E-mail: SJafari@guilan.ac.ir

Abstract

A linearly polarized laser pulse has been employed as a wiggler in a free-electron laser (FEL) in the presence of a plasma background for generating short wavelength radiation down to the extreme ultraviolet ray and X-ray spectral regions. Introducing plasma background in the FEL interaction region would lessen the beam energy requirement and also enhance both the beam current and the electron-bunching process. This configuration affords the possibility of scaling the device to more compact FELs and would have a higher tunability by changing the plasma density and the temperature of the electron beam. Electron trajectories have been analyzed using single-particle dynamics. The effect of plasma density on electron orbits has been investigated. A polynomial dispersion relation considering longitudinal thermal motion has been derived, by employing perturbation analysis. Numerical studies indicate that by increasing plasma density, the growth rate for groups I and II decreases, while the growth rate for group III increases. In addition, the effect of beam temperature and cyclotron frequency on the growth rate has been discussed. It has been found that by increasing the thermal velocity of the electron beam, the growth rate for groups I and III trivially decreases, while it increases for group II orbits. Besides, an increase in cyclotron frequency cause growth enhancement for group I orbits, while it present a growth decrement for group II and III orbits.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abedi, S., Dorranian, D., Etehadi-Abari, M. & Shokri, B. (2011). Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma. Phys. Plasmas 18, 093108-1093108-5.Google Scholar
Alesini, D., Bertolucci, S., Biagini, M.E., Boni, R., Boscolo, M., Castellano, M., Clozza, A., Di Pirro, G., Drago, A., Esposito, A., Ferrario, M., Fusco, V., Gallo, A., Ghigo, A., Guiducci, S., Incurvati, M., Ligi, C., Marcellini, F., Migliorati, M., Milardi, C., Mostacci, A., Palumbo, L., Pellegrino, L., Preger, M., Raimondi, P., Ricci, R., Sanelli, C., Serio, M., Sgamma, F., Spataro, B., Stecchi, A., Stella, A., Tazzioli, F., Vaccarezza, C., Vescovi, M., Vicario, C., Zobov, M., Alessandria, F., Bacci, A., Boscolo, I., Broggi, F., Cialdi, S., De Martinis, C., Giove, D., Maroli, C., Petrillo, V., Romè, M., Serafini, L., Musumeci, P., Mattioli, M., Catani, L., Chiadroni, E., Tazzari, S., Ciocci, F., Dattoli, G., Doria, A., Flora, F., Gallerano, G.P., Giannessi, L., Giovenale, E., Messina, G., Mezi, L., Ottaviani, P.L., Picardi, L., Quattromini, M., Renieri, A., Ronsivalle, C., Cianchi, A., Schaerf, C. & Rosenzweig, J.B. (2004). The SPARC/X SASE-FEL projects. Laser Part. Beams 22, 341350.Google Scholar
Allaria, E., Appio, R., Badano, L., Barletta, W.A., Bassanese, S., Biedron, S.G., Borga, A. & Busetto, E. (2012). Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699704.Google Scholar
Amann, J., Berg, W., Blank, V., Decker, F.-J., Ding, Y., Emma, P., Feng, Y., Frisch, J., Fritz, D., Hastings, J. & Huang, Z. (2012). Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 1, 693698.Google Scholar
Andriyash, I.A., d'Humieres, E., Tikhonchuk, V.T. & Balcou, Ph. (2012). X-ray amplification from a Raman free-electron laser. Phy. Rev. Lett. 109, 244802-1244802-5.CrossRefGoogle ScholarPubMed
Andriyash, I.A., Lehe, R., Lifschitz, A., Thaury, C., Rax, J.-M., Krushelnick, K. & Malka, V. (2014). An ultracompact X-ray source based on a laser-plasma undulator. Nat. Commun. 5, 16.Google Scholar
Avetissian, H.K. (2016). Electron diffraction on a traveling wave: “Inelastic Kapitza–Dirac effect”. Laser Part. Beams 34, 480492.Google Scholar
Babaei, S. & Maraghechi, B. (2008). Plasma-loaded free-electron laser with thermal electron beam and background plasma. Phys. Plasmas 15, 013102-1013102-10.CrossRefGoogle Scholar
Bellucci, S., Bini, S., Biryukov, V.M., Chesnokov, Y.A., Dabagov, S., Giannini, G., Guidi, V., Ivanov, Y.M. & Kotov, V.I. (2003). Experimental study for the feasibility of a crystalline undulator. Phys. Rev. Lett. 90, 034801-1034801-3.Google Scholar
Bonifacio, R., Robb, G.R.M. & Piovella, N. (2011). Harmonics in a quantum free electron laser: towards a compact, coherent γ-ray source. Opt. Commun. 284, 10041007.Google Scholar
Corde, S. & Phuoc, K. Ta (2011). Plasma wave undulator for laser-accelerated electrons. Phys. Plasmas 18, 033111-1033111-5.CrossRefGoogle Scholar
Corde, S., Phuoc, K. Ta, Lambert, G., Fitour, R., Malka, V. & Rousse, A. (2013). A. Femtosecond x rays from laser–plasma accelerators. Rev. Mod. Phys. 85, 148.Google Scholar
Couhan, S. & Mishra, G. (2003). Effect of induced betatron motion on longitudinal wiggler free-electron laser gain. Laser Part. Beams 21, 5358.Google Scholar
Deng, A.H., Liu, J.S., Nakajima, K., Xia, C.Q., Wang, W.T., Li, W.T., Lu, H.Y., Zhang, H., Ju, J.J., Tian, Y., Wang, Ch., Li, R.X. & Xu, Z.Z. (2012). Control of electron-seeding phase in a cascaded laser wakefield accelerator. Phys. Plasmas 19, 023105-1023105-6.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291280.Google Scholar
Fedele, R., Miano, G. & Vaccaro, V.G. (1990). The plasma undulator. Phys. Scr. T30, 192197.Google Scholar
Freund, H.P. & Antonsen, T.M. (1992). Principles of Free-electron Lasers. London: Chapman and Hall.Google Scholar
Gallardo, J.C., Fernow, R.C., Palmer, R. & Pellegrini, C. (1988). Theory of a free-electron laser with a Gaussian optical undulator. IEEE J. Quantum Electron. 24, 15571566.Google Scholar
Ganeev, R.A. (2012). Generation of harmonics of laser radiation in plasmas. Laser Phys. Lett. 9, 175194.Google Scholar
Geddes, C.G.R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Geloni, G., Kocharyan, V. & Saldin, E. (2011). A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 13911403.Google Scholar
Gizzi, L.A., Galimberti, M., Giulietti, A., Giulietti, D., Tomassini, P., Borghesi, M., Campbell, D.H., Schiavi, A. & Willi, O. (2001). Relativistic laser interactions with preformed plasma channels and gamma-ray measurements. Laser Part. Beams 19, 181186.Google Scholar
Hasanbeigi, A., Moghani, S. & Mehdian, H. (2014). Linear theory of quantum two-stream instability in a magnetized plasma with a transverse wiggler magnetic field. Laser Part. Beams 32, 353358.CrossRefGoogle Scholar
Hedayati, R., Jafari, S. & Batebi, S. (2015). Plasma effects on the free-electron laser gain with a plasma wave undulator. Plasma Phys. Control. Fusion 57, 085007.Google Scholar
Hosokai, T., Kinoshita, K., Ohkubo, T., Maekawa, A. & Uesaka, M. (2006). Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity. Phys. Rev. E 73, 036407-1036407-8.Google Scholar
Huang, Z., Ding, Y. & Schroeder, C.B. (2012). Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phy. Rev. Lett. 109, 204801-1204801-5.Google Scholar
Jafari, S. (2015). Low-frequency wiggler modes in the free-electron laser with a dusty magnetoplasma medium. Laser Phys. Lett. 12, 075002-1075002-10.Google Scholar
Jafarinia, F., Jafari, S. & Mehdian, H. (2013). Investigation of the electron trajectories and gain regimes of the whistler pumped free-electron laser. Phys. Plasmas 20, 043106-1043106-7.Google Scholar
Joshi, C., Katsoulens, T., Dawson, J.M., Yan, Y.T. & Slater, J.M. (1987). Plasma wave wigglers for free-electron lasers. IEEE J. Quantum Electron. 23, 15711577.Google Scholar
Lawler, J.E., Bisognano, J., Bosch, R.A., Chiang, T.C., Green, M.A., Jacobs, K., Miller, T., Wehlitz, R., Yavuz, D. & York, R.C. (2013). Nearly copropagating sheared laser pulse FEL undulator for soft x-rays. J. Phys. D: Appl. Phys. 46, 325501-1325501-11.Google Scholar
Liu, C.S., Tripathi, V.K. & Kumar, N. (2007). Vlasov formalism of the laser driven ion channel x-ray laser. Plasma Phys. Control. Fusion 49, 325.Google Scholar
Mahdizadeh, N. & Aghamir, F.M. (2013). Effects of finite beam and plasma temperature on the growth rate of a twostream free electron laser with background plasma. J. Appl. Phys. 113, 083305-1083305-5.Google Scholar
Malka, V. (2012). Laser plasma accelerators. Phys. Plasmas 19, 055501-1055501-11.Google Scholar
Mehdian, H., Jafari, S. & Hassanbeigi, A. (2010). Generation of stimulated emission from a relativistic beam by magnetized dusty plasma crystals (DPCs). Plasma Phys. Control. Fusion 52, 055005055019.Google Scholar
Oura, M., Wagai, T., Chainani, A., Miyawaki, J., Sato, H., Matsunami, M., Eguchi, R., Kiss, T., Yamaguchi, T., Nakatani, Y., Togashi, T., Katayama, T., Ogawa, K. & Yabashi, M. (2014). Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility. J. Synchrotron Radiat. 21, 183.CrossRefGoogle ScholarPubMed
Papadichev, V. (1999). An electrostatic undulator with single-polarity feed. Nucl. Instrum. Methods Phys. Res., Sect. A 429, 377385.Google Scholar
Ratner, D., Abela, R., Amann, J., Behrens, C., Bohler, D., Bouchard, G., Bostedt, C., Boyes, M., Chow, K., Cocco, D., Decker, F.J. & Ding, Y. (2015). Experimental demonstration of a soft x-ray self-seeded free-electron laser. Phy. Rev. Lett. 114, 054801054806.Google Scholar
Rykovanov, S.G., Schroeder, C.B., Esarey, E., Geddes, C.G.R. & Leemans, W.P. (2015). Plasma undulator based on laser excitation of wakefields in a plasma channel. Phy. Rev. Lett. 114, 054801054806.Google Scholar
Sazegari, V., Mirzaie, M. & Shokri, B. (2006). Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102.CrossRefGoogle Scholar
Sprangle, P. & Hafizi, B. (2014). High-power, high-intensity laser propagation and interactions. Phys. Plasmas 21, 055402-1055402-11.CrossRefGoogle Scholar
Tantawi, S., Shumail, M., Neilson, J., Bowden, G., Chang, C., Hemsing, E. & Dunning, M. (2014). Experimental demonstration of a tunable microwave undulator. Phys. Rev. Lett. 112, 164802.Google Scholar
Thaury, C., Quéré, F., Geindre, J.-P., Levy, A., Ceccotti, T., Monot, P., Bougeard, M., Réau, F., d'Oliveira, P., Audebert, P., Marjoribanks, R. & Martin, Ph. (2007). Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424429.CrossRefGoogle Scholar
Williams, R.L., Clayton, C.E., Joshi, C. & Katsouleas, T.C. (1993). Studies of classical radiation emission from plasma wave undulators. IEEE Trans. Plasma Sci. 21, 156166.Google Scholar
Wong, L.J., Kaminer, I., Ilic, O., Joannopoulos, J.D. & Soljačić, M. (2015). Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 10, 4652.Google Scholar