Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T13:51:35.133Z Has data issue: false hasContentIssue false

Effect of electron-ion recombination on self-focusing/defocusing of a laser pulse in tunnel ionized plasmas

Published online by Cambridge University Press:  29 October 2013

Shikha Misra*
Affiliation:
Centre of Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
S. K. Mishra
Affiliation:
Institute for Plasma Research, Gandhinagar, India
M. S. Sodha
Affiliation:
Centre of Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
V. K. Tripathi
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Shikha Misra, Centre of Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India. E-mail: shikhamish@gmail.com

Abstract

A formalism for investigation of the propagation characteristics of various order short duration (pico second) Gaussian/dark hollow Gaussian laser pulse (DHGP) in a tunnel ionized plasma has been developed, which takes into account the electron-ion recombination. Utilizing the paraxial like approach, a nonlinear Schrödinger wave equation characterizing the beam spot size in space and time has been derived and solved numerically to investigate the transverse focusing (in space) and longitudinal compression (in time) of the laser pulse; the associated energy localization as the pulse advances in the plasma has also been analyzed. It is seen that in the absence of recombination the DHGP and Gaussian pulse undergo oscillatory and steady defocusing respectively. With the inclusion of recombination, the DHGP and Gaussian pulse both undergo periodic self-focusing for specific parameters. The DHGPs promise to be suitable for enhancement of energy transport inside the plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a Nonlinear medium. Sov. Phys. Usp. 10, 609636.Google Scholar
Amendt, P., et al. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 25892592.Google Scholar
Anand, S. (2009). Generation of Gaussian beam and its anomalous behaviour. Opt. Comm. 282, 13351339.Google Scholar
Annou, R., Tripathi, V.K. & Srivastava, M.P. (1996). Plasma channel formation by short pulse laser. Phys. Plasmas 3, 13561359.Google Scholar
Arlt, J. & Dholakia, K. (2000). Generation of high-order Bessel beams by use of an axicon. Opt. Comm. 177, 297301.Google Scholar
Biondi, M.A. & Brown, S.C. (1949). Measurement of electron and ion recombination, Technical Report 135, August 3, (Research laboratory of electronics)Google Scholar
Borisov, A.B., Borovisiky, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992). Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.Google Scholar
Brandi, H.S., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. (1993). Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids 5, 35393550.Google Scholar
Burnett, N.H. & Enright, G.D. (1990). Population inversion in the recombination of optically-ionized plasmas. IEEE J. Quant. Electron. 26, 17971808.Google Scholar
Cai, Y., Liu, X. & Lin, Q. (2003). Hollow Gaussian beam and their propagation properties. Opt. Lett. 28, 10841086.Google Scholar
Cai, Y. & Lin, Q. (2004). The elliptical Hermite–Gaussian beam and its propagation through paraxial systems. J. Opt. Soc. Am. A 21, 10581065.Google Scholar
Deng, S., Barnes, C.D., Clayton, C.E., O'Connell, C., Decker, F.J., Emma, P., Erdem, O., Huang, C., Hogan, M.J., Iverson, R., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K., Mori, W.B., Mugglil, P., Siemann, R.H. & Walz, D. (2003). Proceeding of the Particle Accelerator conference.Google Scholar
Dufree III, C.G. & Milchburg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 24092412.Google Scholar
Ganic, D., Gan, X. & Gu, M. (2003). Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Opt. Express 11, 27472752.Google Scholar
Gildenburg, V.B., Kim, A.V., Krupnov, V.A., Semenov, V.E., Sergeev, A.M. & Zharova, N.A. (1993). Adiabatic frequency up-conversion of a powerful electromagnetic pulse producing gas ionization. IEEE Trans. Plasma Sci. 21 3444.Google Scholar
Gupta, D.N., Suk, H. & Ryu, C.M. (2005). Electron acceleration and electron-positron pair production by laser in tunnel ionized inhomogeneous plasma. Phys. Plasmas 12, 093110/1–6.Google Scholar
Gupta, R., Sharma, P., Rafat, M. & Sharma, R.P. (2011 a). Cross-focusing of two hollow Gaussian laser beams in plasmas. Laser Part. Beams 29, 227230.Google Scholar
Gupta, R., Rafat, M. & Sharma, R.P. (2011 b). Effect of relativistic self-focusing on plasma wave excitation by a hollow Gaussian beam. J. Plasma. Phys. 77, 777784.Google Scholar
Gurevich, A.V. (1978). Nonlinear Phenomena in the Ionosphere. New York: Springer.Google Scholar
Hefferon, G., Sharma, A. & Kourakis, I. (2010). Electromagnetic pulse compression and energy localization in quantum plasmas. Phys. Lett. A 374, 43364342.Google Scholar
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffraction less beams. J. Opt. Sot. Am. A 8, 932942.Google Scholar
Joshi, C., et al. (1984). Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nature (London) 311, 525529.CrossRefGoogle Scholar
Keldysh, L.V. (1965). Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 13071314.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1978). Quantum Mechanics. London: Pergamum.Google Scholar
Lee, H.S., Atewart, B.W., Choi, K. & Fenichel, H. (1994). Holographic non-diverging hollow beams. Phys. Rev. A 49, 49224927.Google Scholar
Leemans, W.P., Clayton, C.E., Mori, W.B., Marsh, K.A., Kaw, P.K., Dyson, A. & Joshi, C. (1992). Experiments and simulations of tunnel-ionized plasmas. Phys. Rev. A. 46, 10911105.Google Scholar
Liu, C.S. & Tripathi, V.K. (1994). Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 31003103.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2000). Ring formation in self-focusing of electromagnetic beams in plasmas. Phys. Plasmas 7, 43604363.CrossRefGoogle Scholar
Mei, Z. & Zhao, D. (2005). Controllable dark-hollow beams and their propagation characteristics. J. Opt. Soc. Am. A 22, 18981902.Google Scholar
Misra, S. & Mishra, S.K. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma with relativistic-ponderomotive regime. Prog. Electromagn. Res. B 16, 291309.Google Scholar
Parashar, J., Pandey, H.D. & Tripathi, V.K. (1997). Two dimensional effects in a tunnel ionized plasma. Phys. Plasmas 4, 30403042.Google Scholar
Paterson, C. & Smith, R. (1996). Higher-order Bessel waves produced by axicon-type computer-generated holograms. Opt. Comm. 124, 121130.Google Scholar
Sharma, A., Borhanian, J. & Kourakis, I. (2009). Electromagnetic beam profile dynamics in collisional plasmas. J. Phys. A: Math. Theor. 42, 4655011–12.Google Scholar
Sharma, A. & Kourakis, I. (2009). Relativistic laser pulse compression in plasmas with a linear axial density gradient. Plasmas Phys. Contr. Fusion 52, 065002/1–13.Google Scholar
Sharma, A., Kourakis, I. & Shukla, P.K. (2010). Spatiotemporal evolution of high-power relativistic laser pulses in electron-positron-ion plasmas. Phys. Rev. E 82, 016402/1–7.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 a). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.Google Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 b). Focusing of dark hollow Gaussian electromagnetic beam in a magneto-plasma. J. Plasma Phys. 75, 731748.Google Scholar
Soding, J., Grimm, R. & Ovchinnikov, Yu.V. (1995). Gravitational laser trap for atoms with evanescent wave cooling. Opt. Comm. 119, 652662.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Tikhonenko, V. & Akhmediev, N.N. (1996). Excitation of vortex solitons in a Gaussian beam configuration. Opt. Comm. 126, 108112.Google Scholar
Verma, U. & Sharma, A.K. (2011). Laser focusing and multiple ionization of Ar in a hydrogen plasma channel created by a pre-pulse. Laser Part. Beams 29, 219225.Google Scholar
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable radius rings of light. Opt. Lett. 18, 767770.Google Scholar
Xu, X., Wang, Y. & Jhe, W. (2002). Theory of atom guidance in a hollow laser beam: Dressed atom approach. J. Opt. Soc. Am. B 17, 10391050.Google Scholar
Yin, J., Gao, W. & Zhu, Y. (2003). Propagation of various dark hollow beams in a turbulent atmosphere. Progr. Opt. 44, 119204.Google Scholar
Yin, J., Noh, H., Lee, K., Kim, K., Wang, Yu. & Jhe, W. (1997). Generation of a dark hollow beam by a small hollow fibre. Opt. Comm. 138, 287292.CrossRefGoogle Scholar
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100 195001–7Google Scholar
Zhu, K., Tang, H., Sun, X., Wang, X. & Liu, T. (2002). Flattened multi-Gaussian light beams with an axial shadow generated through superposing Gaussian beams. Opt. Comm. 207, 2934.Google Scholar