Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:24:11.224Z Has data issue: false hasContentIssue false

Difference between Hawking and Unruh radiation derived from studies about pair production by lasers in vacuum

Published online by Cambridge University Press:  28 November 2006

TIMOTHY STAIT-GARDNER
Affiliation:
Nanoscale Organisation and Dynamics Group, University of Western Sydney, Sydney, Australia
REYNALDO CASTILLO
Affiliation:
Nanoscale Organisation and Dynamics Group, University of Western Sydney, Sydney, Australia Nanoscale Organisation and Dynamics Group, University of Western Sydney, Sydney, Australia and School of Engineering, Diego Portales University, Santiago, Chile

Abstract

Laser acceleration of electrons in laser fields of intensities above 1028 W/cm2 were found to be in the same range as acceleration at the surface of black holes, where the laser intensities are in the range of pair production in vacuum due to vacuum polarization. The results in connection with the black holes arrived at similarities to the Hawking and Unruh radiation. We present here results based on the thermodynamics of the vacuum fluctuations that there is a difference between Hawking and Unruh effects in connection with the Casimir effect in view of the vacuum properties for laser produced pairs in a vacuum.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, S.L. & Lieberman, J. (1977). Regularization of the stress-energy tensor for vector and scalar particles propagating in a general background metric. Ann. Phys. 106, 279301.Google Scholar
Andrick, D. & Langhans, L. (1978). Measurement of free-free cross sections of e-Ar scattering. J. Phys. B 11, 23552360.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005a). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005b). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401410.Google Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.Google Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.Google Scholar
Bekenstein, J.D. (1973). Black holes and entropy. Phys. Rev. D 7, 23332341.Google Scholar
Bell, J.S. (1966). On the problem of hidden variables in quantum mechanics. Rev. Mod. Physics 38, 447.Google Scholar
Bombelli, L., Koul, R.K., Lee, J. & Sorkin, R.D. (1986). Quantum source of entropy for black holes. Phys. Rev. D 34, 373378.Google Scholar
Boreham, B.W., Hora, H. & Bolton, P.R. (1996). Photon density and the correspondence principle of electromagnetic interaction. In Laser Interaction and Related Plasma Phenomena (Nakai, S. and Miley, G.H., Eds.), pp. 12341243. Woodbury, NY: American Institute of Physics.
Candelas, P. (1980). Vacuum polarization in Schwarzschild space-time. Phys. Rev. D 21, 21852192.Google Scholar
Casimir, H.G.B. (1948). On the forces between two perfectly conducting plates. Proc. Conf. Nederl. Akad. van Westensch. B 51, 793796.Google Scholar
Chan, W-K., Castillo, R. & Lai, K.F. (1999). Foliations in Supergravity. J. Austral. Math. Soc. Ser. B 41, 161168.Google Scholar
Chan, W-K., Lai, K.F. & Castillo, R. (1993). Riemannian foliation in N = 1, D = 11 supergravity. Il Nuovo Cimento 108 B, 739746.Google Scholar
Christopoulos, A., Hora, H., Stening, R.J., Loeb, H. & Scheid, W. (1988). Geometric limitations of the efficient generation of anti-hydrogen in an intense laser focus. Nucl. Instr. Meth. A 271, 178187.Google Scholar
Collins, M. (2003). Laser Beam Propagation in Vacuum and Plasma. Honour's Thesis. Sydney: University of Western Sydney.
Cowan, T.E., Parry, M.D, Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C, Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.Google Scholar
Davies, P.C.W. (1976). On the origin of black hole evaporation radiation. Proc. R. Soc. London A 351, 129165.Google Scholar
Davies, P.C.W. (1977). The thermodynamics of black holes. Proc. R. Soc. London A 353, 499506.Google Scholar
Davies, P.C.W. & Fulling, S.A. (1977). Quantum vacuum energy in two-dimensional space-time. Proc. R. Soc. London A 354, 5967.Google Scholar
Deutsch, C. & Tahir, N. (2007). Fusion reactions and matter-antimatter annihilation for space propulsion. Laser Part. Beams 24 (In press).Google Scholar
Everett, L.L. (2005). On the oddity of extra dimensions. http://www-library.desy.de/preparch/desy/proc/proc02-02/Proceedings/pa.7/everett_pr.pdf.
Froissart, M. (2001). Elements de theorie quantique des champs dans l'espace de la relativite generale. http://cdfinfo.in2p3.fr/froissart/h2001/course01/node45.html.
Fulling, S.A. (1973). Nonuniquness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 28502858.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 15.Google Scholar
Haag, R., Narnhofer, H. & Stein, U. (1984). On quantum field theory in gravitational background. Commun. Math. Phys. 94, 219235.Google Scholar
Haag, R. & Swieca, J.A. (1965). When does a quantum field theory describe particles? Commun. Math. Phys. 14, 308321.Google Scholar
Haarland, C.M. (1995). Laser electron acceleration in vacuum. Opt. Commun. 114, 280283.Google Scholar
Hartle, J.B. (2003). An Introduction to Einstein's General Relativity. Boston MA: Addison Wesley.
Hawking, S.W. (1975). Particle creation by black holes. Commun. Math. Phys. 43, 199213.Google Scholar
Hawking, S.W. (1974). Black hole explosions. Nature 248, 30.Google Scholar
Heisch, B., Rudea, A. & Putthoff, H.E. (1994). Inertia as a zero-point-field Lorentz force. Phys. Rev. A 49, 678694.Google Scholar
Heisenberg, W. & Euler, H. (1936). Folgerungen aus der Diracschen theorie des positrons. Z. fur Phys. 98, 714732.Google Scholar
Heisenberg, W. (1934). Bemerkungen zu Diracschen theorie des positrions. Z. für Phys. 90, 209231.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (1973a). Relativistic oscillation of charged particles in laser fields and pair production. Nature (London) Phys. Sci. 243, 3435.Google Scholar
Hora, H. (1973b). Estimates for the efficient production of antihydrogen by lasers of very high intensities. Optoelectron. 5, 491501.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser-plamsa interaction. Czech. J. Phys. 53, 199217.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser plasma interaction. Laser Part. Beams 24, 455463.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002a). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.Google Scholar
Hora, H., Osman, F., Castillo, R., Collins, M., Stait-Gardner, T., Chan, W-K., Holss, M., Scheid, W., Wang, J-X. & Ho, Y-K. (2002b). Laser generated pair production and hawking-unruh radiation. Laser Part. Beams 20, 7986.Google Scholar
Hora, H. & Handel, P.H. (1987). New experiments and theoretical developments of the quantum modulation of electrons (Schwarz-Hora effect). Advances in Electronics and Electron Physics (Hawkes, P.W., Ed.), Vol. 69, pp. 55114. San Diego CA: Academic Press.
Hora, H. & Loeb, H.W. (1986). Efficient production of antihydrogen by laser for space propulsion. Z.t fur Flugwissenschaft und Weltraumforschung 10, 393400.Google Scholar
Itoh, Y., Hotta, M. & Futamase, M.M. (1998). Thermal hair of a quantum black hole. Phys. Rev. D 58, 064016-1/5.Google Scholar
Kibble, T.W.B., Salam, A. & Trathdee, H.A. (1975). Intensity dependent mass shift and symmetry breaking. Nucl. Phys. B 96, 255262.Google Scholar
Kruit, P., Kimman, J., Muller, H.G. & Van Der Wiel, M..J. (1983). Electron spectra from multiphoton ionisation of xenon at 1064, 532 1n3 355 nm. Phys. Rev. A 28, 248.Google Scholar
Kyrala, G.A., Delamater, N., Wilson, D., Guzik, J., Haynes, D.D., Gunderson, M., Klare, K., Watt, R.W., Wood, W. & Varnum, M. (2005). Direct drive double shell target implosion hydrodynamics on OMEGA. Laser Part. Beams 23, 187192.Google Scholar
Lasers of very high Intensity. Optoelectronics 5, 491501.
Louko, J. & Whiting, B.F. (1995). Hamiltonian thermodynamics of the Schwarzschild black hole. Phys. Rev. D 51, 55835589.Google Scholar
Martinez, E.A. (1995). Microcanonical, functional integral and entropy for eternal black holes. Phys. Rev. D 51, 57325737.Google Scholar
Milton, K.A. (2001). The Casimir Effect: Physical Manifestation of Zero-Poiont-energy. Singapore: World Scientific.
Misner, C.W., Thorne, K.S. & Wheeler, J.A. (1973). Gravitation. New York: W. H. Freeman & Co.
Mourou, G., Barty, P.J. & Parry, M.D. (1998). Ultra-intensity lasers: Physics of the extreme on a tabletop. Phys. Today 51, 2228.Google Scholar
Mukohyama, S., Seiu, M. & Kodama, H. (1998). Thermodynamics of entanglement in Schwarzschild space-time. Phys. Rev. D 58, 064001-1/5.Google Scholar
Peng, H.S., Zhang, W.Y., Zhang, X.M., Tang, Y.J., Zheng, W.G., Zheng, Z.J., Wwe, X.F., Ding, Y.K., Gou, Y., Zhou, S.P., Pei, W.B. (2005). Progress in ICF programs at CAEP. Laser Part. Beams 23, 397.Google Scholar
Prokhorov, A.M. & Bunkin, F.W. (1969). Plarisation Matiere et Rayonnement, Volume Jubilaire en L'honeaur d'Alfred Castler, pp. 2528. Paris: Dunod.
Reiss, H.R. (1971). Production of electron pairs from a zero-mass state. Phys. Rev. Lett. 26, 10721075.Google Scholar
Rindler, W. (1965). Elliptical Kruskal-Schwarzschild space. Phys. Rev. Lett. 26, 1001.Google Scholar
Rosu, H.C. (2003). Fernet-Serret vacuum radiation, detection proposals and related topics. Hi.-Ener. Phys. Theor. 1, 0301128/1-4.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.Google Scholar
Schwarz, H. & Hora, H. (1969). Modulation of an electron wave by a light wave. Appl. Phys. Lett. 15, 349351.Google Scholar
Seely, J.F. (1974). Quantum theory of inverse bremsstrahlung absorption and pair production. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.), Vol. 3B, pp. 835847. New York: Plenum Press.
Shearer, J.W., Garrison, J., Wong, J. & Swain, J.E. (1973). Pair production by relativistic electrons from an intense laser focus. Phys. Rev. A 8, 15821588.Google Scholar
Shearer, J.W., Garrison, J., Wong, J. & Swain, J.E. (1974). Pair production by relativistic electrons from an intense laser focus. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.), Vol. 3B, pp. 803817. New York: Plenum Press.
Stait-Gardner, T.J. (2005). Thermodynamics in curved space. Ph.D. Thesis. Sydney: University of Western Sydney.
Stait-Gardner, T.J., (2000). General relativity, kaluza-klein theory, an introduction. Honour's Thesis. Sydney: University of Western Sydney.
Takagi, S. (1986). Vacuum noise and stress induced by uniform acceleration. Prog. Theor. Phys. 88, 1126.Google Scholar
Unruh, W.G. (1976). Notes on black hole evaporation. Phys. Rev. D 14, 870892.Google Scholar
Wald, R.M. (1994). Quantum Field Theory in Curved Space-time and Black Hole Thermodynamics. Chicago: The University of Chicago Press.
York, J.W. (1983). Dynamical origin of black-hole radiance. Phys. Rev. D 28, 29292934.Google Scholar
Zeilinger, A., Gähler, R., Shull, C.G., Treimer, W. & Mampe, W. (1988). Sincle and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 10671073.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.Google Scholar