Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T14:50:36.406Z Has data issue: false hasContentIssue false

Diagnosing dense and magnetized plasmas irradiated by a petawatt laser

Published online by Cambridge University Press:  30 November 2015

C. Deutsch*
Affiliation:
LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
H.B. Nersisyan
Affiliation:
Radiophysics Institute-Yerevan, Armenia
A. Bendib
Affiliation:
Quantum Electronic Laboratory, Faculty of Sciences, USTHB, Algiers, Algeria
*
Address correspondence and reprint requests to: C. Deutsch, LPGP-U-Paris-Sud, (UMR-CNRS 8578), Orsay, France. E-mail: claude.deutsch@u-psud.fr

Abstract

We survey the present status and potentialities of diagnostics for arbitrary magnetized plasmas of inertial confinement fusion concern. These diagnostics include: Faraday rotation, inverse Faraday effect, Thomson scattering, Stark–Zeeman line broadening as well as proton stopping for any ratio, of the particles plasma frequency to cyclotron frequency. This presentation is timely motivated by recent experiments highlighting laser-produced kilo Teslas and nearly steady magnetic fields in inertial fusion plasmas. Positive synergies due to diagnostics combinations are also addressed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekefi, G., Deutsch, C. & Ya’ akobi, B. (1976). Spectroscopic diagnostics of laser plasmas. In Principles of Laser Plasmas (Bekefi, E.G. Ed.), pp. 549569. New York: Wiley Interscience.Google Scholar
Cereceda, C., Deperetti, M. & Deutsch, C. (2005). Stopping power for arbitrary angle between test particle velocity and magnetic field. Phys. Plasma 12, 022102.CrossRefGoogle Scholar
Cereceda, C., Deutsch, C., Deperetti, M., Sabatier, M. & Nersisyan, H.B. (2000). Dielectric response function and stopping power of dense magnetized plasma. Phys. Plamas 7, 28842893.CrossRefGoogle Scholar
Chou, C.K. & Chen, H.H. (1994). Stokes parameters for Thomson scattering in a cold magnetized plasma. Astrophys. Space Sci. 218, 87100.CrossRefGoogle Scholar
Deschamps, J., Fitaire, M. & Lagoute, M. (1970). Inverse Faraday effect in a plasma. Phys. Rev. Lett. 25, 13301333.CrossRefGoogle Scholar
Deutsch, C. (1970). Influence of a strong magnetic field on plasma – broadened 2P – 4P, 2P – 4D and 2P – 4F He (I) lines. Phys. Rev. A2, 12581261.CrossRefGoogle Scholar
Deutsch, C. & Popoff, R. (2008). Low ion – velocity slowing down in a strongly magnetized target plasma. Phys. Rev. E78, 056405–8.Google Scholar
Eliezer, S. (2002). The Interaction of High – Power Lasers with Plasmas. Bristol, Philadelphia: Institute of Physics.CrossRefGoogle Scholar
Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Shiraga, H., Nishimura, H. & Azechi, H. (2013). KiloTesla magnetic field due to a capacitor – coil target driven by high – power laser. Sci. Rep. 3, 11701179.CrossRefGoogle ScholarPubMed
Griem, H.R. (1964). Plasma Spectroscopy. New York: Mc Graw-Hill Co.Google Scholar
Horovitz, Y., Eliezer, S., Ludminski, A., Henis, Z., Moshe, E., Shpitalnik, R. & Arad, B. (1997). Measurements of inverse Faraday effect absorption of circularly polarized laser light in plasmas. Phys. Rev. Lett. 78, 17971800.CrossRefGoogle Scholar
Ichimaru, S. (1973). Basic Principles of Plasma Physics: A Statistical Approach. Reading, MA: W.A. Benjamin.Google Scholar
Iglesias, C. (2013). Efficient algorithms for Stark – Zeeman spectral line shape calculations. High Energy Density Phys. 9, 737744.CrossRefGoogle Scholar
Kenmochi, N., Minami, C., Takahashi, S., Mizuuchi, T., Kobayashi, S., Nagasaki, K., Nakamura, Y., Okada, S., Yamamoto, S., Oshima, S., Konoshima, S., Shi, N., Zang, L., Kasajima, K. & Sano, F. (2014). First measurements of time evolution of electron temperature profiles with Nd:YAG Thomson scattering system on Heliotron. J. Rev. Sci. Instrum. 85, 11D819-3.CrossRefGoogle Scholar
Lehner, T. (1994). Intense magnetic – field generation by relativistic ponderomotive force in an underdense plasma. Phys. Scr. 49, 704711.CrossRefGoogle Scholar
Marchetti, M.C., Kirkpatrick, T.R. & Dorfman, J.R. (1984). Anomalous diffusion of charged particles in a strong magnetic field. Phys. Rev. A 29, 29602962.CrossRefGoogle Scholar
Najmudin, Z., Tatarakis, M., Pukhov, A., Clark, E.L., Clarke, R.J., Dangor, A.E., Faure, J., Malka, V., Neely, D., Santala, M.I.K. & Krushelnik, K. (2001). Measurements of the inverse Faraday effect from relativistic interactions with an underdense plasma. Phys. Rev. Lett. 87, 2150021503.CrossRefGoogle ScholarPubMed
Nersisyan, H.B., Toepffer, C. & Zwicknagel, G. (2007). Interactions between Charged Particles in a Magnetic Field. Berlin – Heidelberg: Springer – Verlag.Google Scholar
Nguyen – Hoe, , Drawin, H.W. & Herman, L. (1967). Effet d'un champ magnétique uniforme sur les profils des raies de l'hydrogène. J. Quant. Spectrosc. Radiat. Transf. 7, 429474.Google Scholar
Potekhin, A.Y. & Chabrier, G. (2012). Equation of state for magnetized Coulomb plasmas. Astron. Astrophys. 550, A43.CrossRefGoogle Scholar
Sheffield, J. (1975). Plasma Scattering of Electromagnetic Radiation. New York: Academic Press.Google Scholar
Talin, B.Kaftandjian, V.P. & Klein, L.S. (1975). Inverse Faraday effect in plasmas. Phys. Rev. A 11, 648665.CrossRefGoogle Scholar