Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T12:52:33.687Z Has data issue: false hasContentIssue false

The development of a joule level of XeF(C-A) laser by optical pumping

Published online by Cambridge University Press:  05 December 2005

LI YU
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
JING-RU LIU
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
LIAN-YING MA
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
AI-PING YI
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
CHAO HUANG
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
XIAO-XIA AN
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
YONG-SHENG ZHANG
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
JIAN-CANG SU
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China
ZHENG-ZHONG ZENG
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, China

Abstract

A joule level of XeF(C-A) laser optically pumped by a sectioned surface discharge was developed. The irradiative intensity of pumping source was diagnosed by calculating XeF2 photo-dissociation wave evolvement which was photographed by a framing camera. The photon flux in the wavelength region of 140 to 170nm is about 5 × 1023 photon s−1cm−2, that corresponds to the irradiative brightness temperature of more than 25000 K. The laser experiments were carried out in different conditions. The maximum laser output energy of 2.5 J was obtained with the total conversion efficiency of 0.1%.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernardo, A.D.I., Courtois, C., Cros, C., Matthieussent, G., Batani, D., Desai, T., Strati, F. & Lucchini, G. (2003). High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas. Laser Part. Beams 21, 5964.Google Scholar
Gavrilov, S.A., Golishnikov, D.M., Gordienko, V.M., Savel'ev, A.B. & Volkov, RV. (2004). Efficient hard X-ray source using femtosecond plasma at solid targets with a modified surface. Laser Part. Beams 22, 301306.Google Scholar
Hu, Z.Y., Liu, J.R., Yu, L. & Zhang, Y.S. (2001). XeF(C-A) laser pumped by radiation from a segmented surface discharge. Acta Optica Sinica 21, 450453.Google Scholar
Kaecht, B.A., Fraser, R.D., Wheeler, D.J., Zietkiewicz, C.J., Senin, A.A., Mikheev, L.D., Zuev, V.S. & Eden, J.G. (2003). Optical pumping of the XeF(C-A) and iodine 1.315 μm lasers by a compact surface discharge system. Opt. Eng. 42, 36123621.Google Scholar
Lenzer, M., Kruger, J., Sartania, S., Cheng, Z., Spielman, Ch., Mourou, G., Kautek, W. & Krausz, F. (1998). Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 40764079.Google Scholar
Lan, K., Fill, E. & Meyer-Ter-Vehn, J. (2004). Photo-pumping of XUV lasers by XFEL radiation. Laser Part. Beams 22, 261266.Google Scholar
Limpouch, J., Klimo, O., Bina, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-alpha emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.Google Scholar
Magunov, A.I., Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Mormand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Yu. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Malinovskii, G.Ya., Mamaev, S.B., Mikheev, L.D., Moskalev, T.Yu., Sentis, M.L., Cheremiskin, V.I. & Yalovoi, V.I. (2001). Numerical simulation of the active medium and investigation of the pump source for the development of a photochemical XeF(C-A) amplifier of femtosecond optical pulses. Quan. Electr. 31, 617622.Google Scholar
Mikheev, L.D. (1992). Possibility of amplification of a femtosecond pulse up to the energy 1 kJ. Laser Part. Beams 10, 473478.Google Scholar
Mikheev, L., Levtchemko, K., Mamaev, S., Mislavskii, V., Moskalev, T., Sentis, M., Shirokikh, A., Tcheremiskine, V. & Yalovoi, V. (2004). Direct amplification of frequency doubled femtosecond pulse from Ti:Sa laser in photo-chemically driven XeF(C-A) active media. Proceedings of SPIE 5448, 384392.Google Scholar
Mikheev, L.D., Stavrovskii, D.B. & Zuev, V.S. (1995). Photo-dissociation XeF laser operating in the visible and UV regions. J. Russian Laser Res. 16, 427475.Google Scholar
Sentis, M.L., Tcheremiskin, V.I. & Delaporte, Ph.C. (1997). XeF(C-A) laser pumped by formed-ferrite open discharge radiation. Appl. Phys. Lett. 70, 11981200.Google Scholar
Tcheremiskine, V.I., Sentic, M.L. & Mikheev, L.D. (2002). Amplification of ultrashort laser pulses in the photolytically driven XeF(C-A) active medium. Appl. Phys. Lett. 81, 403405.Google Scholar
Yao, D.S., Liu, J.R., Wang, L.G, Li, T.J., Yu, C.X. & Zhan, R.J. (1999). Deposition of diamond like carbon film by ultrashort pulsed excimer laser. ACTA Optica Sinica 19, 270276.Google Scholar
Yu, L., Liu, J.R., Hu, Z.Y. & Huang, M.S. (1998). Experimental study on XeF(C-A) laser pumped by surface discharge radiation. Proceedings of the International Conference on Lasers'97, pp. 8387. Soc. Opt. & Quantum Electron, Mclean, VA, USA.
Yu, L., Zhang, Y.S., Liu, J.R., Hu, Z.Y. & Yuan, X. (2001). Optically pumped Blue-green XeF(C-A) laser. Chinese Lasers 28, 205208.Google Scholar
Zuev, V.S., Kashnikov, G.N. & Mamaev, S.B. (1992). XeF laser with optical pumping by surface discharge. Sov. J. Quan. Electr. 22, 973979.Google Scholar
Zuev, V.S. & Mikheev, L.D. (1991). Photochemical Lasers. (Letokhov, V.S., Shank, C.V., Shen, Y.R. & Walther, H., Eds.). Switzerland: Harwood Academic Publishers.