Published online by Cambridge University Press: 09 March 2009
The results of a high-resolution processing, based on techniques of fractal dimension analysis, of experimental data from earlier experiments on the linear Z-pinches are presented, which prove the electric current-carrying plasmas to be a random fractal medium. The basic building block of this medium is identified to be an almost-closed helical filamentary magnetoplasma configuration (we call it heteromac). The heteromacs are coupled together through long-range self-sustained filamentation and, thus, form a dynamical percolating network with dissipation. The results (i) extend recently identified phenomenon of the 3D large-scale (up to several centimeter size) helical filamentary plasma structures (Kukushkin et al. 1994, 1995, 1997a) in plasma focus gaseous discharges to the case of Z-pinch gaseous discharges and (ii) provide a novel view into the dynamics of Z-pinch's necks, plasma spikes, and magnetic bubbles as well as into generic features of electric current-carrying plasmas varying from low-electric current laboratory plasmas to cosmic plasmas. This covers about 30 orders of magnitude of length scale and suggests unprecedented opportunities for interpolating between and extrapolating from well-understood phenomena. A magnetoplasma universe model is suggested.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.