Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:43:40.989Z Has data issue: false hasContentIssue false

Competition between the stimulated Raman and Brillouin scattering under the strong damping condition

Published online by Cambridge University Press:  27 March 2013

L. Hao*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China
Z. J. Liu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China
X. Y. Hu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China
C. Y. Zheng
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China Center for Applied Physics and Technology, Peking University, Beijing, 100871, China
*
Address correspondence and reprint requests to: Liang Hao, Institute of Applied Physics and Computational Mathematics Beijing, BeijingChina. E-mail: hao_liang@iapcm.ac.cn

Abstract

In this paper, we discuss the competition between the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) instabilities under the strong damping condition. Based on a five-wave interaction model, relations of the stationary backscattering reflectivity between SRS and SBS are deduced in the case of homogeneous plasmas. Developments of the two coexistent instabilities are simulated with different parameters. The density and the temperature of plasma are found to be important in determining which instability dominates the backscattering in the regime of competition. Furthermore, the influence of inhomogeneous condition to the pattern of competition is analyzed. Numerical results consist with our theoretical results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldis, H.A., Young, P.E., Drake, R.P., Kruer, W.L., Estabrook, E., Williams, E.A. & Johnston, T.W. (1989). Competition between the stimulated Raman and Brillouin scattering instabilities in 0.35-μm irradiated CH foil targets. Phys. Rev. Lett. 62, 28292832.CrossRefGoogle ScholarPubMed
Berger, R.L., Still, C.H., Williams, E.A. & Langdon, A.B. (1998). On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasmas 5, 43374356.CrossRefGoogle Scholar
Boyd, T.J.M. & Sanderson, J.J. (2003). The Physics of Plasmas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Calder, A.C. & Barnard, A.J. (1988). Stimulated Raman scattering in the presence of stimulated Brillouin scattering. Phys. Fluids 31, 23352340.CrossRefGoogle Scholar
Chapman, T., Huller, S., Masson-Laborde, P.E., Heron, A., Pesme, D. & Rozmus, W. (2012). Driven spatially autoresonant stimulated Raman scattering in the kinetic regime. Phys. Rev. Lett. 108, 145003145008.CrossRefGoogle ScholarPubMed
Estabrook, K., Kruer, W.L. & Haines, M.G. (1989). Nonlinear features of stimulated Brillouin and Raman scattering. Phys. Fluids B 1, 12821287.CrossRefGoogle Scholar
Forslund, D.W., Kindel, J.M. & Lindman, E.L. (1975). Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18, 10021016.CrossRefGoogle Scholar
Froula, D.H., Divol, L., London, R.A., Berger, R.L., Doppner, T., Meezan, N.B., Ralph, J., Ross, J.S., Suter, L.J. & Glenzer, S.H. (2010). Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility. Phys. Plasmas 17, 056302056309.CrossRefGoogle Scholar
Hao, L., Liu, Z.J., Zheng, C.Y., Xiang, J., Feng, W., Hu, X.Y. & Li, B. (2012). Study of stimulated Raman and Brillouin scattering in a finite interaction region under the convective instability condition. Chin. Sci. Bull. 57, 27472751.CrossRefGoogle Scholar
Hu, Y.M. & Hu, X.W. (2003). Parametric processes of a strong laser in partially ionized plasmas. Phys. Rev. E 67, 036402036410.Google Scholar
Kruer, W.L. (1998). The Physics of Laser Plasma Interactions. Reading: Addison-Wesley.Google Scholar
Labaune, C., Baldis, H.A., Renard, N., Schifano, E. & Michard, A. (1997). Interplay between ion acoustic waves and electron plasma waves associated with stimulated Brillouin and Raman scattering. Phys. Plasmas 4, 423428.CrossRefGoogle Scholar
Langdon, A.B. & Hinkel, D.E. (2002). Nonlinear evolution of stimulated scatter in high - temperature plasmas. Phys. Rev. Lett. 89, 015003.CrossRefGoogle ScholarPubMed
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334025.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendining, S.G., Glenzer, S.H., Hann, S.W., Kauffman, R.L., Landen, O.L. & Suter, L. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Liu, C.S., Rosenbluth, M.N. & White, R.B. (1974). Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas. Phys. Fluids 17, 12111220.CrossRefGoogle Scholar
Liu, Z.J., Hao, L., Xiang, J., Zhu, S.P., Zheng, C.Y., Cao, L.H. & He, X.T. (2012). Multiple acoustic modes stimulated Brillouin scattering in hydrogen plasmas. Plasma Phys. Contr. Fusion 54, 095004.CrossRefGoogle Scholar
Mahmoud, S.T. & Sharma, R.P. (2001). Effect of pump depletion and self-focusing (hot spot) on stimulated Raman scattering in laser-plasma interaction. Laser Part. Beams 64, 613621.Google Scholar
Maximov, A.V., Oppitz, R.M., Rozmus, W. & Tikhonchuk, V.T. (2000). Nonlinear stimulated Brillouin scattering in inhomogeneous plasmas. Phys. Plasmas 7, 42274238.CrossRefGoogle Scholar
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., Kabir, M.M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The current trends in SBS and phase conjugation. Laser Part. Beams 30, 117174.CrossRefGoogle Scholar
Pesme, D., Laval, G. & Pellat, R. (1973). Parametric instabilities in bounded plasmas. Phys. Rev. Lett. 31, 203206.CrossRefGoogle Scholar
Powers, L.V., Berger, R.L., Kauffman, R.L., MacGowan, B.J., Amendt, P.A., Back, C.A., Bernat, T.P., Dixit, S.N., Eimerl, D.I., Estabrook, K.G., Harte, J.A., Kalantar, D.H., Klem, D.E., Lasinski, B.F., Montgomery, D.S., Moody, J.D., Munro, D.H., Shepard, T.D., Suter, L.J., Turner, R.E., Williams, E.A., Fernandez, J.C., Hsing, W.W., Wilde, B.H. & Failor, B.H. (1995). Gas-filled targets for large scale-length plasma interaction experiments on Nova. Phys. Plasmas 2, 24732480.CrossRefGoogle Scholar
Ramani, A. & Max, C. E. (1983). Stimulated Brillouin scattering in an inhomogeneous plasma with broad-bandwidth thermal noise. Phys. Fluids 26, 10791102.CrossRefGoogle Scholar
Rose, H.A., DuBois, D.F. & Bezzerides, B. (1987). Nonlinear coupling of stimulated Raman and Brillouin scattering in laser-plasma interactions. Phys. Rev. Lett. 58, 25472550.CrossRefGoogle ScholarPubMed
Rosenbluth, M.N. (1972). Parametric instabilities in inhomogeneous media. Phys. Rev. Lett. 29, 565567.CrossRefGoogle Scholar
Rozmus, W., Sharma, R.P., Samson, J.C. & Tighe, W. (1987). Nonlinear evolution of stimulated Raman scattering in homogeneous plasmas. Phys. Fluids 30, 21812194.CrossRefGoogle Scholar
Sharma, P., Bhardwaj, A.K. & Sharma, R.P. (2012). Study of stimulated Brillouin scattering in extended paraxial region. Laser Part. Beams 30, 207213.CrossRefGoogle Scholar
Sharma, R.P., Sharma, P., Rajput, S. & Bhardwaj, A.K. (2009). Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27, 619627.CrossRefGoogle Scholar
Shuller, S. & Porzio, A. (2010). Order statistics and extreme properties of spatially smoothed laser beams in laser-plasma interaction. Laser Part. Beams 28, 463477.CrossRefGoogle Scholar
Strozzi, D.J., Shoucri, M.M., Bers, A., Willians, E.A. & Langdon, A.B. (2006). Vlasov simulations of trapping and inhomogeneity in Raman scattering. J. Plasma Phys. 72, 12991302.CrossRefGoogle Scholar
Strozzi, D.J., Williams, E.A., Hinkl, D.E, Froula, D.H., Londaon, R.A. & Callahan, D.A. (2008). Ray-based calculations of backscatter in laser fusion targets. Phys. Plasmas 15, 102703102718.CrossRefGoogle Scholar
Tang, C.L. (1966). Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process. J. Appl. Phys. 37, 29452955.CrossRefGoogle Scholar
Villeneuve, D.M., Baldis, H.A. & Bernard, J.E. (1987). Suppression of stimulated Raman scattering by the seeding of stimulated Brillouin scattering in a laser-produced plasma. Phys. Rev. Lett. 59, 15851588.CrossRefGoogle Scholar
Walsh, C.J., Villeneuve, D.M. & Baldis, H.A. (1984). Electron plasma-wave production by stimulated Raman scattering: Competition with stimulated Brillouin scattering. Phys. Rev. Lett. 53, 14451448.CrossRefGoogle Scholar