Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:10:34.620Z Has data issue: false hasContentIssue false

Collisional effects on the modulational instability of intense laser pulses in magnetoactive plasmas

Published online by Cambridge University Press:  14 October 2015

A. R. Niknam*
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
S. Barzegar
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
B. Bokaei
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
F. Haji Mirzaei
Affiliation:
Physics Department, Islamic Azad University, Arak Branch, Arak, Iran
A. Aliakbari
Affiliation:
Physics Department, Faculty of Science, Tafresh University, Tafresh, Iran
*
Address correspondence and reprint request to: Ali Reza Niknam, Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran, Iran. E-mail: a-niknam@sbu.ac.ir

Abstract

The modulational instability associated with propagation of an intense laser pulse through a transversely magnetized plasma is investigated in the presence of collisional effects. The source-dependent expansion method for analyzing the wave equation is employed. The dispersion relation is obtained and modulational instability and its growth rate are studied. It is shown that in the absence of collisional effects the modulational instability is restricted to the small wavenumber region and the constant magnetic field reduces the growth rate of the instability. In contrast, in the collisional plasma, there is no upper limit of wavenumber for the existence of modulational instability. In addition, in this case, the growth rate of instability increases as the collision frequency goes up.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bokaei, B., Niknam, A.R. & Milani, M.R.J. (2013). Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma. Phys. Plasmas 20, 103107103111.CrossRefGoogle Scholar
Chen, H.Y., Liu, S.Q. & Li, X.Q. (2010). Modulation instability by intense laser beam in magnetized plasma. Optik 122, 599603.CrossRefGoogle Scholar
Couairon, A., Biegert, J., Hauri, C.P., Kornelis, W., Helbing, F.W., Keller, U. & Mysyrowicz, A. (2006). Self-compression of ultra-short laser pulses down to one optical cycle by filamentation. J. Mod. Optic. 53, 75.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Fuchs, J., d'Humires, E., Sentoku, E.Y., Antici, P., Atzeni, S., Bandulet, H., Depierreux, S., Labaune, C. & Schiavi, A. (2010). Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels. Phys. Rev. Lett. 105, 225001225004.CrossRefGoogle ScholarPubMed
Gill, T.S., Kaur, R. & Mahajan, R. (2011). Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma. Laser Part. Beams 29, 183191.CrossRefGoogle Scholar
Guerin, S., Laval, G., Mora, P., Adam, J.C., Heron, A. & Bendib, A. (1995). Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2, 2807.CrossRefGoogle Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyaya, A.K. (2005). Modulation instability of laser pulse in magnetized plasma. Phys. Plasmas 12, 123104123109.CrossRefGoogle Scholar
Lin, H., Chen, L.M. & Kieffer, J.C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E 65, 036414036419.CrossRefGoogle ScholarPubMed
Mauger, S., Berge, L. & Skupin, S. (2010). Self-focusing versus stimulated Brillouin scattering of laser pulses in fused silica. New J. Phys. 12, 103049103057.CrossRefGoogle Scholar
Niknam, A.R., Aliakbari, A., Majedi, S., Haji Mirzaei, F. & Hashemzadeh, M. (2011). Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma. Phys. Plasmas 18, 112305112311.CrossRefGoogle Scholar
Niknam, A.R., Barzegar, S. & Hashemzadeh, M. (2013). Self-focusing and stimulated Brillouin back-scattering of a long intense laser pulse in a finite temperature relativistic plasma. Phys. Plasmas 20, 122117122122.CrossRefGoogle Scholar
Niknam, A.R., Rastbood, E., Bafandeh, F., Khorashadizadeh, S.M. (2014). Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma. Phys. Plasmas 21, 042307042311.CrossRefGoogle Scholar
Pathak, V.B. & Tripathi, V.K. (2006). Nonlinear electromagnetic plasma eigenmodes and their stability to stimulated Raman scattering. Phys. Plasmas 13, 082105082108.CrossRefGoogle Scholar
Quesnel, B., Mora, P., Adam, J.C., Heron, A. & Laval, G. (1997). Electron parametric instabilities of ultra intense short laser-pulses propagating in plasmas. Phys. Rev. Lett. 78, 21322135.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sen, G.K. (1978). Modulational instability from an intense elliptically polarized electromagnetic wave in a homogeneous unmagnetized plasma. Plasma Phys. 20, 13131324.CrossRefGoogle Scholar
Shorokhov, O., Pukhov, A. & Kostyukov, I. (2003). Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91, 265002.CrossRefGoogle ScholarPubMed
Sprangle, P., Hafizi, B. & Penano, J.R. (2000). Laser pulse modulation instabilities in plasma channels. Phys. Rev. E 61, 43814384.CrossRefGoogle ScholarPubMed
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar