Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T11:23:18.076Z Has data issue: false hasContentIssue false

Characterization of X-ray radiation from solid Sn target irradiated by femtosecond laser pulses in the presence of air plasma sparks

Published online by Cambridge University Press:  04 August 2016

A. Curcio*
Affiliation:
INFN National Laboratories of Frascati, Frascati, Italy Physics Department of the Roma University “La Sapienza”, Rome, Italy
M. Anania
Affiliation:
INFN National Laboratories of Frascati, Frascati, Italy
F.G. Bisesto
Affiliation:
INFN National Laboratories of Frascati, Frascati, Italy Physics Department of the Roma University “La Sapienza”, Rome, Italy
A. Faenov
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow 125412, Russia
M. Ferrario
Affiliation:
INFN National Laboratories of Frascati, Frascati, Italy
M. Galletti
Affiliation:
INFN National Laboratories of Frascati, Frascati, Italy
D. Giulietti
Affiliation:
Physics Department of the University and INFN, Pisa, Italy
R. Kodama
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan PPC Osaka University and JST, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
M. Petrarca
Affiliation:
S.B.A.I. department of the Roma University “La Sapienza”, Rome, Italy INFN Roma1, Rome, Italy
T. Pikuz
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow 125412, Russia
A. Zigler
Affiliation:
INFN National Laboratories of Frascati, Frascati, Italy Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
*
Address correspondence and reprint requests to: A. Curcio, INFN National Laboratories of Frascati, Frascati, Italy. E-mail: alessandro.curcio@lnf.infn.it

Abstract

The emission of X-rays from solid tin targets irradiated by low-energy (few mJ) femtosecond laser pulses propagated through air plasma sparks is investigated. The aim is that to better understand the X-ray emission mechanism and to show the possibility to produce proper radiation for spectroscopic and imaging applications with a table-top laser system. The utilization of a controlled ultrashort prepulse is found necessary to optimize the conversion efficiency of laser energy into Lα radiation. The optimum contrast between the main pulse and the controlled prepulse is found about 102. A correlation between the laser contrast value and the laser near-infrared spectra at the exit of the plasma spark is observed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braun, A., Korn, G., Liu, X., Du, D., Squier, J. & Mourou, G. (1995). Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 7375.Google Scholar
Chen, Z., Wu, Q., Yang, M., Tang, B., Yao, J., Rupp, R.A., Cao, Y. & Xu, J. (2013). Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases. Laser Part. Beams 31, 539545.Google Scholar
Couairon, A. & Mysyrowicz, A. (2007). Femtosecond filamentation in trasparent media. Phys. Rep. 44, 47109.Google Scholar
Di Bernardo, A., Courtois, C., Cros, B., Matthieussent, G., Batani, D., Desai, T., Strati, F. & Lucchini, G. (2003). High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas. Laser Part. Beams 21, 5964.Google Scholar
Faenov, A.Ya., Pikuz, S.A., Zidkov, A.G., Skobelev, I.Yu., Komarov, P.S., Chefonov, O.V., Gasilov, S.V. & Ovchinnikov, A.V. (2010). Excitation of X-rays by electrons accelerated in air in the wake wave of a laser pulse. JETP Lett. 92, 375.Google Scholar
Franken, P.A., Hill, A.E., Peters, C.W. & Weinreich, G. (1961). Generation of optical harmonics. Phys. Rev. Lett. 7, 118.Google Scholar
Giulietti, A. & Giulietti, D. (2015). Self-phase modulation in various regimes of intense laser-plasma interactions. J. Plasma Phys. 81, 495810608.Google Scholar
Hoyer, W., Knorr, A., Moloney, J.V., Wright, E.M., Kira, M. & Koch, S.W. (2005). Photoluminescence and terahertz emission from femtosecond laser-induced plasma channels. Phys. Rev. Lett. 94, 115004.Google Scholar
Jhajj, N., Rosenthal, E.W., Birnbaum, R., Wahlstrand, J.K. & Milchberg, H.M. (2014). Demonstration of long-lived high-power optical waveguides in air. Phys. Rev. X 4, 011027.Google Scholar
Koga, J.K., Naumova, N., Kando, M., Tsintsadze, L.N., Nakajima, K., Bulanov, S.V., Dewa, H., Kotaki, H. & Tajima, T. (2000). Fixed blueshift of high intensity short pulse lasers propagating in gas chambers. Phys. Plasmas 7, 52235228.Google Scholar
Lange, H.R., Ripoche, L.F., Chiron, A.A., Lamouroux, B., Franco, M.A., Prade, B. & Mysyrowicz, A. (1998). Time-space self-compression of femtosecond laser pulses in air. In Quantum Electronics Conference, 1998. IQEC 98. Technical Digest. Summaries of papers presented at the International (pp. 243244). IEEE.Google Scholar
Ledingham, K.W.D., Abuazoum, S.S., McCanny, T., Melone, J.J., Spohr, K., Schramm, U., Kraft, S.D., Wagner, A. & Jochmann, A. (2011). Comparison of hard X-ray production from various targets in air using a short pulse kHz laser with photon production from a high power multifilament laser beam from the same targets in air. arXiv:1106.4152[physics.plasm-ph].Google Scholar
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Ta Phuoc, K. (2008). Principles and Applications of compact laser-plasma accelerators. Nat. Phys. 4, 447453.Google Scholar
Mangles, S., Walton, B. & Najmudin, N., Dangor, A.E., Krushelnik, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006) Table-top laser–plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.Google Scholar
Mitryukovskiy, S.I., Liu, Y., Prade, B., Houard, A. & Mysyrowicz, A. (2013). Coherent synthesis of terahertz radiation from femtosecond laser filaments in air. Appl. Phys. Lett. 102, 221107.Google Scholar
Nagao, H., Hironaka, Y., Nakamura, K.G. & Kondo, K. (2004). Hard X-ray emission from a copper target by focussing a picosecond laser beam at 3 × 1013 W/cm2 . Jap. J. Appl. Phys. 43, 12071208.Google Scholar
Pikuz, S.A., Chefonova, O.V., Gasilova, S.V., Komarova, P.S., Ovchinnikova, A.V., Skobeleva, I.Yu., Ashitkova, S.Yu., Agranata, M.V., Zigler, A. & Faenov, A.Ya. (2010). Micro-radiography with laser plasma X-ray source operating in air atmosphere. Laser Part. Beams 28, 393397.Google Scholar
Tajima, T. & Dawson, J. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Zhang, N., Wu, Z., Xu, K. & Zhu, X. (2012). Characteristics of micro air plasma produced by double femtosecond laser pulses. Opt. Express 20, 2528–38. doi: 10.1364/OE.20.002528.Google Scholar
Zhidkov, A.G., Pikuz, S.A., Faenov, A.Ya., Chefonov, O.V., Ovchinnikov, A.V., Agranat, M.B. & Zigle, A. (2012). Generation of hard X-rays by femtosecond laser pulse interaction with solid targets in atmosphere. Opt. Lett. 37 884886.Google Scholar