Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:56:43.285Z Has data issue: false hasContentIssue false

Theoretical aspect of enhancement and saturation in emission from laser produced plasma

Published online by Cambridge University Press:  25 September 2012

V.N. Rai*
Affiliation:
Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, India
*
Address correspondence and reprint requests to: V.N. Rai, Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, India. E-mail: vnrai@rrcat.gov.in

Abstract

This paper presents a simplified theoretical model for the study of emission from laser produced plasma to better understand the processes and the factors involved in the onset of saturation in plasma emission as well as in increasing emission due to plasma confinement. This model considers that plasma emission is directly proportional to the square of plasma density, its volume, and the fraction of laser pulse absorbed through inverse Bremsstrahlung in the pre-formed plasma plume produced by the initial part of the laser. This shows that plasma density and temperature (that means the electron-ion collision frequency νei) decide the threshold for saturation in emission, which occurs for νei ≥ 1013 s−1, beyond which plasma shielding effects become dominant. Any decrease in plasma sound (expansion) velocity shows drastic enhancement in emission supporting the results obtained by magnetic as well as spatial confinement of laser produced plasma. The temporal evolution of plasma emission in the absence and presence of plasma confinement along with the effect of laser pulse duration are also discussed in the light of this model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilera, J.A., Aragon, C. & Penalba, F. (1998). Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis. Appl. Surf. Science 127–129, 309314.CrossRefGoogle Scholar
Bittencourt, J.A. (1986). Fundamentals of Plasma Physics. Oxford: Pergamon Press.Google Scholar
Bauerle, D. (1996). Laser Processing and Chemistry. New York: Springer-Verlag.CrossRefGoogle Scholar
Babushok, V.I., De Lucia, F.C. Jr., Gottfried, J.L., Munson, C.A. & Miziolek, A.W. (2006). Double pulse laser ablation and plasma: Laser-induced breakdown spectroscopy signal enhancement. Spectrochim. Acta Part B 61, 9991014.CrossRefGoogle Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.CrossRefGoogle Scholar
Batani, D. (2010). Short pulse laser ablation of materials at high intensities: Influence of plasma effects. Laser Part. Beams 28, 235244.CrossRefGoogle Scholar
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Film. New York: Wiley Publications.Google Scholar
Cabalin, I.M. & Laserna, J.J. (1998). Experimental determination of laser-induced breakdown thresholds of metal under nano second Q-switched laser operation. Spectrochim. Acta Part B 53, 723730.CrossRefGoogle Scholar
Capitelli, M., Casavola, A., Colonna, G. & De Giacomo, A. (2004). Laser-induced plasma expansion: Theoretical and experimental aspects. Spectrochim. Acta Part B 59, 271289.CrossRefGoogle Scholar
Dawson, L.J. (1964). On the production of plasma by giant pulse lasers. Phys. Fluid. 7, 981987.CrossRefGoogle Scholar
De Giacomo, A., Shakhatov, V.A., Sensi, G.S. & Orlando, S. (2001). Spectroscopic investigations of the technique of plasma assisted pulsed laser ablation of titanium dioxides. Spectrochim. Acta Part B 56, 14591472.CrossRefGoogle Scholar
De Giacomo, A., Dell'Aglio, M. & De Pascale, O. (2004). Single pulse laser induced plasma spectroscopy in aqueous solution. Appl. Phys. A 79, 10351038.CrossRefGoogle Scholar
Doria, D., Lorusso, A., Belloni, F., Nassisi, V., Torrisi, L. & Gammino, S. (2004). A study of the parameters of particles ejected from laser plasma. Laser Part. Beams 22, 461467.CrossRefGoogle Scholar
De Giacomo, A., Dell Aglio, M., De Pascale, O. & Capitelli, M. (2007). From single pulse to double pulse ns laser-induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples. Spectrochim. Acta Part B 62, 721738.CrossRefGoogle Scholar
Fazeli, R., Mahdieh, M.H. & Tallents, G.J. (2011). Enhancement of line X-ray emission from iron plasma created by laser irradiation of porous targets. Laser Part. Beams 29, 193200.CrossRefGoogle Scholar
Fang, X. & Ahmad, S.R. (2007). Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy of elemental analysis in water. Laser Part. Beams 25, 18.CrossRefGoogle Scholar
Grun, J., Decoste, R., Ripin, B.H. & Gardner, J. (1981). Characteristics of ablation plasma from planar, laser driven targets. Appl. Phys. Lett. 39, 545547.CrossRefGoogle Scholar
Godwal, Y., Taschuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.CrossRefGoogle Scholar
Guo, L.B., Hu, W., Zhang, B.Y., He, X.N., Li, C.M., Zhou, Y.S., Cai, Z.X., Zeng, X.Y. & Lu, Y.F. (2011). Enhancement of optical emission from laser-induced plasma by combined spatial and magnetic confinement. Opt. Exp. 19, 1406714075.CrossRefGoogle ScholarPubMed
Hoffman, D.H.H. (2009). Ion and laser beams as tools for high energy density physics. Laser Part. Beams 27, 12.Google Scholar
Huber, A., Schweer, B., Philipps, V., Leyte-Gonzales, R., Gierse, N., Zlobinski, M., Brezinsek, S., Katov, V., Mertens, P., Samm, U. & Sergienko, G. (2011). Study of the feasibility of applying laser-induced breakdown spectroscopy for the insitu characterization of deposited layer in fusion devices. Physica Scripta T145, 014028.CrossRefGoogle Scholar
Kumar, A., Singh, R.K., Prahlad, V. & Joshi, H.C. (2010 a). Effect of magnetic field on the expansion dynamics of laser-blow-off generated plasma plume: Role of atomic processes. Laser Part. Beams 28, 121127.CrossRefGoogle Scholar
Kumar, A., George, S., Singh, R.K. & Nampoori, V.P.N. (2010 b). Influence of laser beam intensity profile on propagation dynamics of laser-blow-off plasma plume. Laser Part. Beams 28, 387392.CrossRefGoogle Scholar
Kumar, A., George, S., Singh, R.K., Joshi, H. & Nampoori, V.P.N. (2011). Image analysis of expanding laser-produced lithium plasma plume in variable transverse magnetic field. Laser Part. Beams 29, 241247.CrossRefGoogle Scholar
Krasa, J., Lorusso, A., Nassisi, V., Velardi, L. & Velyhan, A. (2011). Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation. Laser Part. Beams 29, 113119.CrossRefGoogle Scholar
Kumar, A. & Verma, A.L. (2011). Nonlinear absorption of intense short pulse laser over a metal surface embedded with nanoparticles. Laser Part. Beams 29, 333338.CrossRefGoogle Scholar
Leitz, Karl-Heinz, Redlingshofer, B., Reg, Y., Otto, A. & Schmidt, M. (2011). Metal ablation with short and ultra-short laser pulses. Phys. Procedia 12, 230238.CrossRefGoogle Scholar
Lee, D.H., Kim, T.H., Jung, E.C. & YunJ,-H J,-H. (2011). Shielding effect of laser-induced plasma in glass: pulse to pulse evolution of nitrogen and analyst emission lines. Appl. Phys. A 104, 863869.CrossRefGoogle Scholar
Max, C.E. (1982). Physics of coronal plasma in laser fusion targets in laser. In Plasma Interaction (Balian, R. & Adams, J.C., Eds.). Amsterdam, North Holland Publishing Co.Google Scholar
Multari, R.A., Foster, L.E., Cremers, D.A. & Ferris, M.J. (1996). Effect of sampling geometry on elemental emission in laser-induced breakdown spectroscopy. Appl. Spectrosc. 50, 14831499.CrossRefGoogle Scholar
Mao, S.S., Mao, X., Grief, R. & Russo, R.E. (2000). Simulation of picosecond laser ablation plasma. Appl. Phys. Lett. 76, 33703372.CrossRefGoogle Scholar
Noll, R., Bette, H., Brysch, A., Kraushaar, M., Monch, I., Peter, L. & Sturn, V. (2001). Laser-induced breakdown spectroscopy applications for production control and quality assurance in the steel industry. Spectrochim. Acta Part B 56, 637649.CrossRefGoogle Scholar
Nath, A. & Khare, A. (2011). Transient evolution of multiple bubbles in laser induced breakdown in water. Laser Part. Beams 29, 19.CrossRefGoogle Scholar
Piepmeier, E.H. (1986). Laser ablation for atomic spectroscopy. In Analytical Application of Lasers (Piepmeier, E.H., Ed.). New York: A Wiley- Interscience Publication.Google Scholar
Puretzky, A.A., Geohegan, D.B., Fan, X. & Pennycook, S.J. (2000). In situ imaging and spectroscopy of single-walled carbon nano tube synthesis by laser vaporization. Appl. Phys. Lett. 76, 182184.CrossRefGoogle Scholar
Radziemski, L.J. & Cremers, D.A. (1989). Laser Induced Plasma and Applications. New York: Marcel Dekker.Google Scholar
Rai, V.N., Shukla, M. & Pant, H.C. (1998). Some studies on picosecond laser produced plasma expanding across a uniform external magnetic field. Laser Part. Beams 16, 431443.CrossRefGoogle Scholar
Rai, V.N., Shukla, M. & Pant, H.C. (2000 a). Density oscillations in laser produced plasma decelerated by external magnetic field. Pramana J. Phys. 55, 773779.CrossRefGoogle Scholar
Rai, V.N., Shukla, M. & Pant, H.C. (2000 b). Effect of chamber pressure induced space charge potential on ion acceleration in laser produced plasma. Laser Part. Beams 18, 315324.CrossRefGoogle Scholar
Rai, V.N., Yueh, F.Y. & Singh, J.P. (2003 a). Study of laser-induced breakdown emission from liquid under double pulse excitation. Appl. Opt. 42, 20942101.CrossRefGoogle ScholarPubMed
Rai, V.N., Rai, A.K., Yueh, F.Y. & Singh, J.P. (2003 b). Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field. Appl. Opt. 42, 20852093.CrossRefGoogle ScholarPubMed
Rai, V.N., Singh, J.P., Fang, F.Y. & Cook, R.L. (2003 c). Study of optical emission from laser produced plasma expanding across an external magnetic field. Laser Part. Beams 21, 6571.CrossRefGoogle Scholar
Rai, V.N., Yueh, F.Y. & Singh, J.P. (2008). Theoretical model for double pulse laser-induced breakdown spectroscopy. Appl. Opt. 47, G30G37.CrossRefGoogle ScholarPubMed
Sun, Q., Tran, M., Smith, B.W. & Winefordner, J.D. (2000). Zinc analysis in human skin by laser-induced breakdown spectroscopy. Talanta 522, 293300.CrossRefGoogle Scholar
Singh, J.P. & Thakur, S.N. (2007). Laser-Induced Breakdown Spectroscopy. Amsterdam: Elsevier Press.Google ScholarPubMed
Schwarz, E., Gross, S., Fischer, B., Muri, I., Tauer, J., Kofler, H. & Wintner, E. (2010). Laser induced optical breakdown applied for laser spark ignition. Laser Part. Beams 28, 109119.CrossRefGoogle Scholar
Wang, Y.-L., Xu, W., Zhou, Y., Chu, L-Z. & Fu, G-S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Wang, Y.L., Chen, C., Ding, X.C., Chu, L.Z., Deng, Z.C., Liang, W.H., Chen, J.Z. & Fu, G.S. (2011). Nucleation and growth of nanoparticles during pulsed laser deposition in an ambient gas. Laser Part. Beams 29, 05111.CrossRefGoogle Scholar
Zel'Dovich, YA.B. & Raizer, YU.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon. New York: Academic Press.Google Scholar
Zeng, X., Mao, X.L., Grief, R. & Russo, R.E. (2005). Experimental investigation of ablation efficiency and plasma expansion during femto second and nanosecond laser ablation of silicon. Appl. Phys. A 80, 237241.CrossRefGoogle Scholar