Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T20:49:29.108Z Has data issue: false hasContentIssue false

Simulations of femtosecond laser pulse interaction with spray target

Published online by Cambridge University Press:  28 January 2014

J. Psikal*
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
O. Klimo
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
J. Limpouch
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
*
Address correspondence and reprint requests to: Jan Psikal, Faculty of Nuclear Sciences and Physical Engineering CTU, Brehova 7, 115 19 Praha 1, Czech Republic. E-mail: jan.psikal@fjfi.cvut.cz

Abstract

Laser interactions with spray targets (clouds of submicron droplets) are studied here via numerical simulations using two-dimensional particle-in-cell codes. Our simulations demonstrate an efficient absorption of laser pulse energy inside the spray. The energy absorption efficiency depends on the inter-droplet distance, size of the cloud of droplets, and laser pulse intensity, as well as on the pre-evaporation of droplets due to laser pulse pedestal. We investigate in detail proton acceleration from the spray. Energy spectra of protons in various acceleration directions vary significantly depending on the density profile of the plasma created from the droplets and on laser intensity. The spray target can be alternative of foil targets for high intensity high repetition ultrahigh contrast femtosecond lasers. However, at intensities >1021 W/cm2, the efficiency of laser absorption and ion acceleration from the droplets drops significantly in contrast to foils.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brantov, A.V., Tikhonchuk, V.T., Klimo, O., Romanov, D.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T. & Nickles, P.V. (2006). Quasi-mono-energetic ion acceleration from a homogeneous composite target by an intense laser pulse. Phys. Plasmas 13, 122705.Google Scholar
Breizman, B.N., Arefiev, A.V. & Fomytskyi, M.V. (2005). Nonlinear physics of laser-irradiated microclusters. Phys. Plasmas 12, 056706.Google Scholar
Di Piazza, A., Muller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.CrossRefGoogle Scholar
Gibbon, P. & Forster, E. (1996). Short-pulse laser-plasma interactions. Plasma Phys. Control. Fus. 38, 769793.Google Scholar
Kemp, A.J. & Ruhl, H. (2005). Multispecies ion acceleration off laser-irradiated water droplets. Phys. Plasmas 12, 033105.Google Scholar
Klimo, O. (2010). PIC Simulations of Ultrashort-Pulse Laser Solid-Target Interactions: The Role of Collisions and Ionization. Saarbrucken, Germany: Lambert Academic Publishing.Google Scholar
Levy, A., Ceccotti, T., D'oliveira, , Reau, F., Perdrix, M., Quere, F., Monot, P., Bougeard, M., Lagadec, H., Martin, P., Geindre, J.P. & Audebert, P. (2007). Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 32, 310312.Google Scholar
Liseykina, T.V. & Bauer, D. (2013). Plasma-formation dynamics in intense laser-droplet interaction. Phys. Rev. Lett. 110, 145003.CrossRefGoogle ScholarPubMed
Lotz, W. (1967) An empirical formula for the electron-impact ionization cross-section. Z. Physik 206, 205211.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.CrossRefGoogle Scholar
Malka, V. (2012). Laser plasma accelerators. Phys. Plasmas 19, 055501.Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Morita, T., Esirkepov, T.Z., Koga, J., Yamagiwa, M. & Bulanov, S.V. (2009). The effect of laser pulse incidence angle on the proton acceleration from a double-layer target. Plasma Phys. Contr. Fus. 51, 024002.Google Scholar
Mourou, G. & Tajima, T. (2011). More intense, shorter pulses. Sci. 331, 4142.Google Scholar
Murakami, M. & Basko, M.M. (2006). Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Phys. Plasmas 13, 012105.CrossRefGoogle Scholar
Nakamura, T., Koga, J.K., Esirkepov, T.Z., Kando, M., Korn, G. & Bulanov, S.V. (2012). High-power gamma-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett. 108, 195001.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.Google Scholar
Pfund, R.E.W., Lichters, R. & Meyer-Ter-Vehn, J. (1998). LPIC ++ a parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. AIP Conf. Proc. 426, 141146.CrossRefGoogle Scholar
Psikal, J., Limpouch, J., Kawata, S. & Andreev, A.A. (2006). PIC simulations of femtosecond interactions with mass-limited targets. Czech. J. Phys. 56, B515B521.CrossRefGoogle Scholar
Psikal, J., Tikhonchuk, V.T., Limpouch, J., Andreev, A.A. & Brantov, A.V. (2008). Ion acceleration by femtosecond laser pulses in small multispecies targets. Phys. Plasmas 15, 053102.Google Scholar
Psikal, J., Tikhonchuk, V.T., Limpouch, J. & Klimo, O. (2010). Lateral hot electron transport and ion acceleration in femtosecond laser pulse interaction with thin foils. Phys. Plasmas 17, 013102.Google Scholar
Psikal, J., Klimo, O. & Limpouch, J. (2011). Field ionization effects on ion acceleration in laser-irradiated clusters. Nucl. Instrum. Meth. Phys. Res. A 653, 109112.Google Scholar
Psikal, J., Klimo, O. & Limpouch, J. (2012). 2D particle-in-cell simulations of ion acceleration in laser irradiated submicron clusters including field ionization. Phys. Plasmas 19, 043107.Google Scholar
Pukhov, A. (2003). Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47101.Google Scholar
Ramakrishna, B., Murakami, M., Borghesi, M., Ehrentraut, L., Nickles, P.V., Schnuerer, M., Steinke, S., Psikal, J., Tikhonchuk, V. & Ter-Avetisyan, S. (2010). Laser-driven quasimonoenergetic proton burst from water spray target. Phys. Plasmas 17, 083113.Google Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L. & Bell, A.R. (2012). Dense electron-positron plasmas and ultraintense gamma rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.Google Scholar
Ter-Avetisyan, S., Schnuerer, M., Stiel, H. & Nickles, P.V. (2003). A high-density sub-micron liquid spray for laser driven radiation sources. J. Phys. D: Appl. Phys. 36, 24212426.Google Scholar
Ter-Avetisyan, S., Schnuerer, M., Nickles, P.V., Smirnov, M.B., Sandner, W., Andreev, A., Platonov, K., Psikal, J. & Tikhonchuk, V. (2008). Laser proton acceleration in a water spray target. Phys. Plasmas 15, 083106.CrossRefGoogle Scholar
Ter-Avetisyan, S., Ramakrishna, B., Borghesi, M., Doria, D., Zepf, M., Sarri, G., Ehrentraut, L., Andreev, A., Nickles, P.V., Steinke, S., Sandner, W., Schnuerer, M. & Tikhonchuk, V. (2011). MeV negative ion generation from ultra-intense laser interaction with a water spray. Appl. Phys. Lett. 99, 051501.Google Scholar
Ter-Avetisyan, S., Ramakrishna, B., Prasad, R., Borghesi, M., Nickles, P.V., Steinke, S., Schnuerer, M., Popov, K.I., Ramunno, L., Zmitrenko, N.V. & Bychenkov, V.Y. (2012). Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets. Phys. Plasmas 19, 073112.Google Scholar