Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T10:39:48.493Z Has data issue: false hasContentIssue false

Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam

Published online by Cambridge University Press:  25 March 2004

M. TEMPORAL
Affiliation:
Universidad de Castilla-La Mancha, Ciudad Real, Spain
A.R. PIRIZ
Affiliation:
Universidad de Castilla-La Mancha, Ciudad Real, Spain
N. GRANDJOUAN
Affiliation:
LULI, UMR 7605, École Polytechnique, CNRS, CEA, Université Paris VI, Palaiseau, France
N.A. TAHIR
Affiliation:
Institut für Theoretische Physik, Universität Frankfurt, Frankfurt, Germany
D.H.H. HOFFMANN
Affiliation:
Institut für Kernphysik, Technische Universität, Darmstadt, Germany Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany

Abstract

Numerical analysis of the compression of a cylindrical cryogenic hydrogen sample surrounded by a high-density metallic shell driven by a heavy ion beam has been performed. The beam power profile is assumed to be parabolic in time and Gaussian in space and is made of uranium ions with a kinetic energy of 2.7 GeV/u. The beam center is positioned off axis and rotates around the target axis to provide a uniform annular energy deposition area. An acceptable symmetry in pressure is achieved if the number of revolutions is equal to or larger than 10. The maximum density and pressure of the hydrogen sample is studied as a function of the spread of the beam power Gaussian distribution and the rotation radius. This configuration leads to compressions of the order of 10 and a temperature of a few thousand Kelvin in hydrogen.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anisimov, S.I., Prokhorov, A.M. & Fortov, V.E. (1984). Application of powerful laser in dynamical physics of high pressure. Sov. Phys. Usp. 27, 181220.Google Scholar
Fortov, V.E., Goel, B., Munz, C.D., Ni, A.L., Shutov, A.V. & Vorobiev, O.Yu. (1996). Numerical simulations of nonstationary fronts and interfaces by Godunov method in moving grids. Nucl. Sci. Eng. 123, 169189.Google Scholar
Hoffmann, D.H.H., Bock, R., Faenov, Ya.A. Funk, U., Geissel, M., Neuner, U., Pikuz, T.A., Rosmej, F., Roth, M., Süß, W., Tahir, N.A., &Tauschwitz, A. (2000). Plasma physics with intense laser and ion beams. Nucl. Instrum. Methods Phys. Res. B 161, 918.Google Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Nellis, W.J., Mitchell, A.C., McCandless, P.C., Erskine, D.J. & Weir, S.T. (1992). Electronic energy gap of molecular hy-drogen from electrical conductivity measurements at high shock pressures. Phys. Rev. Lett. 68, 29372940.Google Scholar
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003a). Generation of a hollow ion beam: Calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev E 67, 017501-1-3.Google Scholar
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A., Hoffmann, D.H.H. (2003b). Symmetry analysis of cylindrical implosions driven by high frequency rotating ion beams. Plasma Phys. Controlled Fusion 45, 17331745.Google Scholar
Ramis, R., Schmalz, R. & Meyer-ter-Vehn, J. (1988). MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Comp. Phys. Com. 49, 475505.Google Scholar
Sharkov, B.Yu., Alexeev, N.N., Churazov, M.D., Golubev, A.A., Koshkarev D.G., &Zenkevich, P.R. (2001). Heavy ion fusion energy program in Russia. Nucl. Instrum. Methods A 464, 15.Google Scholar
Stöwe, S., Bock, R., Dornik, M., Spiller, P., Stetter, M., Fortov, V.E., Mintsev, V., Kulish, M., Shutov, A., Yakushev, V., Sharkov, B., Golubev, S., Bruynetkin, B., Funk, U., Geissel, M., Hoffmann, D.H.H. & Tahir, N.A. (1998). High density plasma physics with heavy-ion beams. Nucl. Instrum. Methods Phys. Res. A 415, 6167.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E 61, 19751980.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev E 62, 12241233.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001). Metallization of hydrogen using heavy-ion-beam implosion of multilayered cylindrical targets. Phys. Rev. E 62, 016402-1-9.Google Scholar
Weir, S.T., Mitchell, A.C. & Nellis, W.J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 18601863.Google Scholar
Wigner, E. & Huntington, H.B. (1935). The possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764770.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1967). Physics of Shock Wave and High Temperature Hydrodynamic Phenomena. New York: Academic Press.
Ziegler, J.F., Biersack, J.P. & Littmark, U. (1996). The Stopping and Ranges of Ions in Solids. New York: Pergamon.