Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T01:52:16.475Z Has data issue: false hasContentIssue false

Generation of periodic structures on SiC upon laser plasma XUV/NIR radiations

Published online by Cambridge University Press:  06 August 2013

L. Gemini*
Affiliation:
FNSPE, Czech Technical University in Prague, Prague, Czech Republic
D. Margarone
Affiliation:
ELI Beamlines Project, Institute of Physics of the ASCR, Prague, Czech Republic
S. Trusso
Affiliation:
CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, Italy
L. Juha
Affiliation:
Institute of Physics of the ASCR, Prague, Czech Republic
J. Limpouch
Affiliation:
FNSPE, Czech Technical University in Prague, Prague, Czech Republic ELI Beamlines Project, Institute of Physics of the ASCR, Prague, Czech Republic
T. Mocek
Affiliation:
HiLASE Project, Institute of Physics of the ASCR,, Czech Republic
P.M. Ossi
Affiliation:
Dip. Energia, Politecnico di Milano, Milano, Italy
*
Address correspondence and reprint requests to: L. Gemini, FNSPE, Czech Technical University in Prague, Brehova 7, 11519, Prague, Czech Republic. E-mail: gemini@fzu.cz

Abstract

Surface periodic structures are generated upon irradiation of a silicon carbide (SiC) thin film by the plasma produced by 40 fs pulses from a Ti:Sapphire laser focused onto a thick low density polyethylene (LDPE) foil facing the SiC film. Independently of the number of laser pulses applied, these structures, with average regular periodicity of 710 nm, are evident throughout all irradiated areas. We attribute their formation to the efficient coupling of the unfocused femtosecond laser pulse with the incoherent extreme ultraviolet component of the laser-generated LDPE plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonse, J., Rosenfeld, A. & Kruger, J. (2011). Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures. Appl. Surf. Sci. 257, 5420.CrossRefGoogle Scholar
Boulmer-Leborgne, C., Benzerga, R. & Perriere, J. (2010). Nanoparticle formation by femtosecond laser ablation. In Laser-Surface Interactions for New Material Production (Miotello, A. & Ossi, P.M, Eds.) Berling: Springer-Verlag, p. 125.Google Scholar
Bulgakova, N., Stoian, R., Rosenfeld, A. & Hertel, I.V. (2010). Continuum Models of Ultrashort Pulsed Laser Ablation. In Laser-Surface Interactions for New Material Production (Miotello, A. & Ossi, P.M., Eds.). Berlin: Springer-Verlag, p. 82.Google Scholar
Derrien, T.J.-Y., Torres, R., Sarnet, T., Sentis, M. & Itina, T.E. (2012). Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258, 9487.CrossRefGoogle Scholar
Dong, Y. & Molian, P. (2003). Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon. Appl. Phys. A 77, 839.CrossRefGoogle Scholar
Gottmann, J., Wortmann, D. & Wagner, R. (2008). Manufacturing of periodical nanostructures by fs-laser direct writing. Proc. SPIE 7022, 702202.CrossRefGoogle Scholar
Margarone, D., Krása, J., Giuffrida, L., Picciotto, A., Torrisi, L., Nowak, T., Musemeci, P., Velyhan, A., Prokůpek, J., Láska, L., Mocek, T., Ullschmied, J. & Rus, B. (2011). Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys. 109, 103302.CrossRefGoogle Scholar
Mocek, T., Jakubczak, K., Chalupsky, J., Park, S.B., Lee, G.H., Kim, T.K., Nam, C.H., Hajkova, V., Toufarova, M., Gemini, L., Margarone, D., Juha, L. & Rus, B. (2012). Efficient surface processing by ultrafast XUV/NIR dual action. Proc. SPIE 8206, 82061H.Google Scholar
Okamuro, K., Hashida, M., Miyasaka, Y., Ikuta, Y., Tokita, S. & Sakabe, S. (2010). Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys. Rev. B 82, 165417.CrossRefGoogle Scholar
Pecholt, B., Gupta, S. & Molian, P. (2011). Review of laser microscale processing of silicon carbide. J. Laser Appl. 23, 012008.CrossRefGoogle Scholar
Pecholt, B., Vendan, M., Dong, Y. & Molian, P. (2008). Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication. Int. J. Adv. Manuf. Technol. 39, 239.CrossRefGoogle Scholar
Ravindran, K., Srinivasan, J. & Marathe, A.G. (2004). Finite element study on the role of convection in laser surface melting. Numer. Heat Trans. A 26, 601.Google Scholar
Reif, J., Varlamova, O. & Costache, F. (2008). Femtosecond laser induced nanostructure formation: self-organization control parameters. Appl. Phys. A: Mater. Sci. Process. 92, 1019.CrossRefGoogle Scholar
Reif, J., Varlamova, O., Varlamov, S. & Bestehorn, M. (2011). The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation. Appl. Phys. A: Mater. Sci. Process. 104, 969.CrossRefGoogle Scholar
Sakabe, S., Hashida, M., Tokita, S., Namba, S. & Okamuro, K. (2009). Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys. Rev. B 79, 033409.CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An Atomic-Level View of Melting Using Femtosecond Electron Diffraction. Sci. 302, 1382.Google ScholarPubMed
Tomita, T., Fukumori, Y., Kinoshita, K., Matsuo, S. & Hashimoto, S. (2008). Observation of laser-induced surface waves on flat silicon surface. Appl. Phys. Lett. 92, 013104.CrossRefGoogle Scholar
Winkler, M.T., Sher, M.-J., Lin, Y.-T., Smith, M.J., Zhang, H., Gradečak, S. & Mazur, E. (2012). Studying femtosecond-laser hyperdoping by controlling surface morphology. J. Appl. Phys. 111, 093511.CrossRefGoogle Scholar
Yu, J.S., Leem, J.W., Ko, Y.H. & Lee, H.K. (2012). Semiconductor nanostructures towards optoelectronic device applications. Proc. SPIE 8268, 82680A.Google Scholar