Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T13:05:13.276Z Has data issue: false hasContentIssue false

Experimental and theoretical investigations of mechanisms responsible for plasma jets formation at PALS

Published online by Cambridge University Press:  29 June 2009

A. Kasperczuk*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Pisarczyk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
N.N. Demchenko
Affiliation:
P.N. Lebedev Physical Institute of RAS, Moscow, Russia
S.Yu. Gus'kov
Affiliation:
P.N. Lebedev Physical Institute of RAS, Moscow, Russia
M. Kalal
Affiliation:
Czech Technical University in Prague, FNSPE, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics AS CR, v.v.i., Prague, Czech Republic
E. Krousky
Affiliation:
Institute of Physics AS CR, v.v.i., Prague, Czech Republic
K. Masek
Affiliation:
Institute of Physics AS CR, v.v.i., Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics AS CR, v.v.i., Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics AS CR, v.v.i., Prague, Czech Republic
J. Skala
Affiliation:
Institute of Physics AS CR, v.v.i., Prague, Czech Republic
P. Pisarczyk
Affiliation:
Warsaw University of Technology, ICS, Warsaw, Poland
*
Address correspondence and reprint requests to: A. Kasperczuk, Institute of Plasma Physics and Laser Microfusion, 23 Hery Street, 00-908 Warsaw, Poland. E-mail: akasperczuk@o2.pl

Abstract

Recent experimental results demonstrated that well formed plasma jets can be produced at laser interaction with targets made of materials with high atomic number (A ≥ 29 where A = 29 corresponds to Cu). On the contrary, it is impossible to launch a plasma jet on low-A material targets like plastic. This paper is aimed at explanation of this difference by considering mechanisms responsible for plasma jet formation, i.e., the radiative cooling of ablative plasma and the influence of target irradiation annular profile speculated hitherto, newly complemented by different expansion regimes of the Cu and plastic plasmas (provided by numerical simulations). The experiment was carried out with the PALS iodine laser. Two different planar massive targets, plastic and Cu, as well as the plastic target covered by thin Cu layers of various thicknesses were irradiated by the third harmonic laser beam of energy of 30 J, pulse duration of 250 ps (full width at half maximum), and the focal spot radius of 400 µm. To find the most suitable range of these layers (from 28 to 190 nm) a simple analytical model of laser-driven evaporation was developed. Three-frame laser interferometer and an X-ray streak camera were used as two main diagnostic tools. Numerical modeling was performed with the use of two-dimensional hydrodynamic code ATLANT-HE. Results provided from experiments and theoretical analyses have proved that the process of plasma jet formation is rather complex. Relative importance of the three mechanisms mentioned above depends on the target irradiation geometry as well as the target material used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bellan, P.M. (2005). Miniconference on astrophysical jets. Phys. Plasmas 12, 058301-1/058301-8.CrossRefGoogle Scholar
Blue, E., Weber, S.V., Glendinning, S.G., Lanier, N.E., Woods, D.T., Bono, M.J., Dixit, S.N., Haynam, C.A., Holder, J.P., Kalantar, D.H., MacGowan, B.J., Nikitin, A.J., Rekow, V.V., Van Wonterghem, B.M., Moses, E.I., Stry, P.E., Wilde, B.H., Hsing, W.W. & Robey, H.F. (2005). Experimental investigation of high-Mach-number 3D hydrodynamic jets at the National Ignition Facility. Phys. Rev. Lett. 94, 095005-1/095005-4.Google Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallance, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Rev. Lett. 83, 19821985.CrossRefGoogle Scholar
Goldman, S.R., Caldwell, S.E., Wilke, M.D., Wilson, D.C., Barnes, C.W., Hsing, W.W., Delamater, N.D., Schappert, G.T., Grove, J.W., Lindman, E.L., Wallance, J.M. & Weaver, R.P. (1999). Shock structuring due to fabrication joints in targets. Phys. Plasmas 6, 33273336.CrossRefGoogle Scholar
Gus'kov, S.Yu., Azechi, H., Demchenko, N.N., Demchenko, V.V., Doskoch, I.Ya., Murakami, M., Nagatomo, H., Rozanov, V.B., Sakaiya, S., Stepanov, R.V. & Zmitrenko, N.V. (2007 a). Laser-driven acceleration of a dense matter up to ‘thermonuclear’ velocities. Plasma Phys. Contr. Fusion 49, 16891706.CrossRefGoogle Scholar
Gus'kov, S.Yu., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J. & Pisarczyk, P. (2007 b). Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse. J.f Exper. Theor. Phys. 105, 793802.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.Google Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Miklaszewski, R., Parys, P., Rosinski, M., Wolowski, J., Stenz, Ch., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 c). Influence of the focal point position on the properties of a laser-produced plasma. Phys. Plasmas 14, 102706-1/102706-8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704-1/062704-8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 a). The influence of target irradiation conditions on the parameters of laser-produced plasma jets. Phys. Plasmas 14, 032701-1/032701-4.Google Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007 b). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425433.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, Ph., Stenz, Ch., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.Google Scholar
Laska, L., Krasa, J., Velyhan, A., Jungwirth, K., Krousky, E., Margarone, D., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L. & Ullschmied, J. (2009). Experimental studies of generation of similar to 100 MeV Au-ions from the laser-produced plasma. Laser Part. Beams 27, 137147.Google Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar out-flows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113119.Google Scholar
Lebo, I.G., Demchenko, N.N., Iskakov, A.B., Limpouch, J., Rozanov, V.B. & Tishkin, V.T. (2004). Simulation of high-intensity laser–plasma interactions by use of the 2D Lagrangian code “ATLANT-HE”. Laser Part. Beams 22, 267273.CrossRefGoogle Scholar
Mizuta, A., Yamada, S. & Takabe, H. (2002). Numerical analysis of jest produced by intense laser. Astrophys. J. 567, 635642.CrossRefGoogle Scholar
Nicolai, Ph., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys.Plasmas 13, 062701-1/062701-8.CrossRefGoogle Scholar
Ryutov, D.D., Drake, R.P. & Remington, B.A. (2000). Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. 127, 465468.Google Scholar
Schaumann, G., Schollmeier, M. & Rodriguez-Prieto, G. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Schopper, R., Ruhl, H., Kunzl, T.A. & Lesch, H. (2003). Kinetic simulation of the coherent radio emission from pulsars. Laser Part. Beams 21, 109113.CrossRefGoogle Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Review E 62, 88388841.CrossRefGoogle ScholarPubMed
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.Google Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379–87.Google Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez-Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.Google Scholar