Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T11:50:25.316Z Has data issue: false hasContentIssue false

Equations of State and the ellipsometry diagnostics

Published online by Cambridge University Press:  08 January 2009

L. Bakshi
Affiliation:
Soreq NRC, Yavne 81800, Israel Mechanical Engineering, Ben Gurion University, Beer Sheva 84105, Israel
S. Eliezer*
Affiliation:
Soreq NRC, Yavne 81800, Israel
Z. Henis
Affiliation:
Soreq NRC, Yavne 81800, Israel
N. Nissim
Affiliation:
Soreq NRC, Yavne 81800, Israel
L. Perelmutter
Affiliation:
Soreq NRC, Yavne 81800, Israel
D. Moreno
Affiliation:
Soreq NRC, Yavne 81800, Israel
M. Sudai
Affiliation:
Soreq NRC, Yavne 81800, Israel
M. Mond
Affiliation:
Mechanical Engineering, Ben Gurion University, Beer Sheva 84105, Israel
*
Address correspondence and reprint requests to: Shalom Eliezer, Soreq NRC, Yavne 81800, Israel. E-mail: shalom.eliezer@gmail.com

Abstract

An overview of the equations of state (EOS) with a short summary of shock wave experiments with laser induced impact flyer, relevant to EOS study, is presented. The “old-new” ellipsometry is suggested and described for the EOS research. The detection of phase transitions of the first kind (solid-solid) as well as phase transition of the second kind (Curie point as an example) is demonstrated. Furthermore, the temperature measurements are not possible without the knowledge of the emissivity, a parameter that can be measured by using ellipsometry techniques.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J.M., Grandjouan, N., Atzeni, S. & Temporal, M. (1996). Optical smoothing for shock-wave generation: Applications to the measurement of equations of state. Laser Part. Beams 14, 211223.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Batani, D., Keonig, M., Benuzzi, A., Krasyuk, I.K., Pashinin, P.P., Semenov, A.Yu., Lomonosov, I.V. & Fortov, V.E. (1999). Problems of measurement of dense plasma heating in laser shock wave compression. Laser Part. Beams 17, 265273.CrossRefGoogle Scholar
Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Intense Dynamic Loading of Condensed Matter. Washington DC: Taylor and Francis.Google Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 21022105.CrossRefGoogle ScholarPubMed
Desai, T., Dezulian, R. & Batani, D. (2007). Radiation effects on shock propagation in Al target relevant to equation of state measurements. Laser Part. Beams 25, 2330.CrossRefGoogle Scholar
Eliezer, S. & Henis, Z. (2008). Applications of Laser-Plasma Interactions, chapter 6, (Eliezer, S. & Mima, K. eds.). Boca Raton: CRC Press.CrossRefGoogle Scholar
Eliezer, S. & Ricci, R.A. (1991). High Pressure Equations of State: Theory and Applications. Amsterdam: North Holland Publishing.Google Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol: Institute of Physics Publishing.CrossRefGoogle Scholar
Eliezer, S., Ghatak, A. & Hora, H. (1986). An Introduction to Equations of State: Theory and Applications. Cambridge: Cambridge University Press.Google Scholar
Eliezer, S., Murakami, M. & Martinez-Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Evans, A.M., Freeman, N.J., Graham, P., Horsfield, C.J., Rothman, S.D., Thomas, B.R. & Tyrrell, A.J. (1996). Hugoniot EOS measurements at Mbar pressures. Laser Part. Beams 14, 113123.CrossRefGoogle Scholar
Fabbro, R., Faral, B., Virmont, J., Pepin, H., Cottet, F. & Romain, J.P. (1986). Experimental evidence of the generation of multi-hundred megabar pressures in 0.26 micron wavelength laser experiments. Laser Part. Beams 4, 413419.CrossRefGoogle Scholar
Koenig, M., Henry, E., Huser, G., Benuzzi-Mounaix, A., Faral, B., Martinolli, E., Lepape, S., Vinci, T., Batani, D., Tomasini, M., Dasilva, L., Caubles, R., Hicks, D., Bradley, D., Mackinnon, A., Patel, P., Eggerts, J., Pasley, J., Willi, O., Neely, D., Notley, M., Danson, C., Borghesi, M., Romagnanis, L., Boehly, T. & Lee, K. (2004). High pressure generated by laser driven shocks: applications to planetary physics. Nucl. Fusion 44, S208S214.CrossRefGoogle Scholar
Lebo, I.G., Lebo, A.I., Batani, D., Dezulian, R., Benocci, R., Jafer, R. & Krousky, E. (2008). Simulations of shock generation and propagation in laser-plasmas. Laser Part. Beams 26, 179188.CrossRefGoogle Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.CrossRefGoogle Scholar
McQueen, R.G. (1991). High Pressure Equations of State: Theory and Applications. (Eliezer, S. & Ricci, R.A., eds.). Amsterdam: North Holland Publishing.Google Scholar
Nissim, N., Eliezer, S., Bakshi, L., Perelmutter, L., Moreno, D., Kot, E., Rozenberg, G.K.H. & Pasternak, M.P. (2007). High-pressure phase transition detection in diamond anvil cell using the method of ellipsometry. J. Appl. Phys. 102, 106104–1/3.CrossRefGoogle Scholar
Obenschain, S.P., Whitlock, R.R., Lean, E.A. & Ripin, B.H. (1983). Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2. Phys. Rev. Lett. 50, 4448.CrossRefGoogle Scholar
Rothman, S.D., Evans, A.M., Horsfield, C.J., Graham, P. & Thomas, B.R. (2002). Impedance match equation of state experiments using indirectly laser-driven multimegabar shocks. Phys. Plasmas 9, 17211733.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Lomonosov, I.V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007 a). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295304.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matvechev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2007 b). Numerical modeling of heavy ion induced stress waves in solid targets. Laser Part. Beams 25, 523540.CrossRefGoogle Scholar
Tahir, N.A., Kim, V.V., Matveichev, A., Ostrik, A., Shutov, A., Lomonosov, I.V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2008 a). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 c). Prospects of high energy, density physics research using the CERN super proton synchrotron (SPS). Laser Part. Beams 25, 639647.CrossRefGoogle Scholar
Tahir, N.A., Weick, H., Shutov, A., Kim, V., Matveichev, A., Ostrik, A., Sultanov, V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 b). Simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super-FRS. Laser Part. Beams 26, 411423.CrossRefGoogle Scholar
Yoneda, H., Morikami, H., Ueda, K. & More, R.M. (2003). Ultrashort pulse laser ellipsometric pump-probe experiments on gold targets. Phys. Rev. Lett. 91, 0750041–4.CrossRefGoogle ScholarPubMed
Zeldovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar