Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T08:01:09.422Z Has data issue: false hasContentIssue false

Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets

Published online by Cambridge University Press:  14 April 2010

S. Steinke*
Affiliation:
Max-Born-Institut, D-12489 Berlin, Germany
A. Henig
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany Fakultät f. Physik, LMU München, D-85748 Garching, Germany
M. Schnürer
Affiliation:
Max-Born-Institut, D-12489 Berlin, Germany
T. Sokollik
Affiliation:
Max-Born-Institut, D-12489 Berlin, Germany
P.V. Nickles
Affiliation:
Max-Born-Institut, D-12489 Berlin, Germany Gwangju Institute of Science and Technology, GIST, Gwangju 500-712, Republic of Korea
D. Jung
Affiliation:
Fakultät f. Physik, LMU München, D-85748 Garching, Germany Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
D. Kiefer
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany Fakultät f. Physik, LMU München, D-85748 Garching, Germany
R. Hörlein
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany Fakultät f. Physik, LMU München, D-85748 Garching, Germany
J. Schreiber
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany Fakultät f. Physik, LMU München, D-85748 Garching, Germany Imperial College London, SW7 2BZ, UK
T. Tajima
Affiliation:
Fakultät f. Physik, LMU München, D-85748 Garching, Germany Photomedical Research Center, JAEA. Kyoto, Japan
X.Q. Yan
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany State Key Lab of Nuclear physics and technology, Peking University, 100871, Beijing, China
M. Hegelich
Affiliation:
Fakultät f. Physik, LMU München, D-85748 Garching, Germany Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
J. Meyer-ter-Vehn
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany
W. Sandner
Affiliation:
Max-Born-Institut, D-12489 Berlin, Germany
D. Habs
Affiliation:
Max-Planck-Institut f. Quantenoptik, D-85748 Garching, Germany Fakultät f. Physik, LMU München, D-85748 Garching, Germany
*
Address correspondence and reprint requests to: S. Steinke, Max-Born-Institut, D-12489 Berlin, Germany. E-mail: steinke@mbi-berlin.de

Abstract

Experiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of 13 MeV for protons and 71 MeV for carbon ions is observed with a conversion efficiency of ~10%. Two-dimensional particle-in-cell (PIC) simulations reveal that the increase in ion energies can be attributed to a dominantly collective rather than thermal motion of the foil electrons, when the target becomes transparent for the incident laser pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, B.J., Yin, L., Bowers, Kevin J., Hegelich, B.M., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Relativistic buneman instability in the laser breakout afterburner. Phys. Plasmas 14, 094502094504.Google Scholar
Andreev, A., Levy, A., Ceccotti, T., Thaury, C., Platonov, K., Loch, R.A. & Martin, P.H. (2008). Fast-ion energy-flux enhancement from ultrathin foils irradiated by intense and high-contrast short laser pulses. Phys. Rev. Lett. 101, 155002.Google Scholar
Andreev, A.A., Steinke, S., Sokollik, T., Schnuerer, M., Ter Avetsiyan, S., Platonov, K.Y. & Nickles, P.V. (2009). Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity. Phys. Plasmas 16, 013103.Google Scholar
Antici, P., Fuchs, J., D'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Gaillard, S., Romagnani, L., Sentoku, Y., Toncian, T., Willi, O., Audebert, P. & Pepin, H. (2007). Energetic protons generated by ultra-high contrast laser pulses interacting with ultrathin targets. Phys. Plasmas 14, 030701.CrossRefGoogle Scholar
Ceccotti, T., Levy, A., Popescu, H., Reau, F., D'Oliveira, P., Monot, P., Geindre, J.P., Lefebvre, E. & Martin, P. (2007). Proton acceleration with high-intensity ultrahigh-contrast laser pulses. Phys. Rev. Lett. 99, 185002.Google Scholar
D'Humieres, Emmanuel, Lefebvre, Erik, Gremillet, Laurent & Malka, Victor. (2005). Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12, 062704062713.CrossRefGoogle Scholar
Esirkepov, T., Yamagiwa, M. & Tajima, T. (2006). Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R., Fern, Aacute & Ndez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, R. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Henig, A., Kiefer, D., Markey, K., Gautier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Bowers, K.J., Fernandez, J.C., Rykovanov, S.G., Wu, H.C., Zepf, M., Jung, D., Liechtenstein, V.K., Schreiber, J., Habs, D. & Hegelich, B.M. (2009 a). Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002.Google Scholar
Henig, A., Steinke, S., Schnuerer, M., Sokollik, T., Horlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-ter Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009 b). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.Google Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. 11, 031301.Google Scholar
Krushelnick, K., Clark, E.L., Beg, F.N., Dangor, A.E., Najmudin, Z., Norreys, P.A., Wei, M. & Zepf, M. (2005). High intensity laser-plasma sources of ions-physics and future applications. Plasma Phys. Contr. Fusion 47, B451B463.CrossRefGoogle Scholar
Levy, A., Ceccotti, T., D'Oliveira, P., Reau, F., Perdrix, M., Quere, F., Monot, P., Bougeard, M., Lagadec, H., Martin, P., Geindre, J.P. & Audebert, P. (2007). Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 32, 310312.CrossRefGoogle ScholarPubMed
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K. Yu & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Mako, F. & Tajima, T. (1984). Collective ion-acceleration by a reflexing electron-beam – model and scaling. Phys. Fluids 27, 18151820.Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.Google Scholar
Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., Wahlstrom, C.G. & McKenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Appl. Phys. Lett. 89, 021502.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at max born institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Nurnberg, F., Schollmeier, M., Brambrink, E., Blazevic, A., Carroll, D.C., Flippo, K., Gautier, D.C., Geissel, M., Harres, K., Hegelich, B.M., Lundh, O., Markey, K., McKenna, P., Neely, D., Schreiber, J. & Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instru. 80, 033301033313.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Schnuerer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P.V. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.Google Scholar
Schreiber, J., Bell, F., Gruener, F., Schramm, U., Geissler, M., Schnuerer, M., Ter-Avetisyan, S., Hegelich, B.M., Cobble, J., Brambrink, E., Fuchs, J., Audebert, P. & Habs, D. (2006). Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97, 045005.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnuerer, M., Nickles, P.V., Kalashnikov, M., Risse, E., Sokollik, T., Sandner, W., Andreev, A. & Tikhonchuk, V. (2006). Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. Phys. Rev. Lett. 96, 145006.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnrer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnuerer, M. & Nickles, P.V. (2005). Time resolved corpuscular diagnostics of plasmas produced with high-intensity femtosecond laser pulses. J. Phys. D-Appl. Phys. 38, 863867.Google Scholar
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 27272741.CrossRefGoogle Scholar
Wang, X., Yu, W., Yu, M.Y., Senecha, V.K., Xu, H., Wang, J.W., Yuan, X. & Sheng, Z.M. (2009). Efficient acceleration of a small dense plasma pellet by consecutive action of multiple short intense laser pulses. Laser Part. Beams 27, 629634.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle ScholarPubMed
Wittmann, T., Geindre, J.P., Audebert, P., Marjoribanks, R.S., Rousseau, J.P., Burgy, F., Douillet, D., Lefrou, T., Phuoc, K.T. & Chambaret, J.P. (2006). Towards ultrahigh-contrast ultraintense laser pulses-complete characterization of a double plasma-mirror pulse cleaner. Rev. Sci. Instru. 77, 083109.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed
Yan, X.Q., Tajima, T., Hegelich, M., Yin, L. & Habs, D. (2009). Theory of laser ion acceleration from a foil target of nanometer thickness. Appl. Phys. B, DOI 0.1007/s00340-00009-03707-00345.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). Gev laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar