Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T21:04:30.934Z Has data issue: false hasContentIssue false

Dynamics of the IFMIF very high-intensity beam

Published online by Cambridge University Press:  22 January 2014

P.A.P. Nghiem*
Affiliation:
CEA, IRFU, Gif-sur-Yvette, France
N. Chauvin
Affiliation:
CEA, IRFU, Gif-sur-Yvette, France
M. Comunian
Affiliation:
INFN/LNL, Legnaro, Italy
O. Delferrière
Affiliation:
CEA, IRFU, Gif-sur-Yvette, France
R. Duperrier
Affiliation:
CEA, IRFU, Gif-sur-Yvette, France
A. Mosnier
Affiliation:
CEA, IRFU, Gif-sur-Yvette, France
C. Oliver
Affiliation:
CIEMAT, Madrid, Spain
W. Simeoni Jr.
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
D. Uriot
Affiliation:
CEA, IRFU, Gif-sur-Yvette, France
*
Address correspondence and reprint requests to: P.A.P. Nghiem, CEA, IRFU, Gif-sur-Yvette, France. E-mail: phu-anh-phi.nghiem@cea.fr

Abstract

For the purpose of material studies for future nuclear fusion reactors, the IFMIF deuteron beams present a simultaneous combination of unprecedentedly high intensity (2 × 125 mA CW), power (2 × 5 MW) and space charge. Special considerations and new concepts have been developed in order to overcome these challenges. The global strategy for beam dynamics design of the 40 MeV IFMIF accelerators is presented, stressing on the control of micro-losses, and the possibility of online fine tuning. Start-to-end simulations without and with errors are presented for the prototype accelerator. Considerations about conflicts between halo and emittance minimization are then discussed in this very high space charge context.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chancé, A., Chauvin, N. & Duperrier, R. (2012). The SolMaxP code. Proc. of IPAC. New Orleans, Louisiana.Google Scholar
Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Gobin, R., Nghiem, P.A.P. & Uriot, D. (2009 a). Final design of the IFMIF-EVEDA low energy beam transport line. Proc. of IPAC. Vancouver, Canada.Google Scholar
Chauvin, N., Duperrier, R., Mosnier, A., Nghiem, P.A.P. & Uriot, D. (2009 b). Optimization results of beam dynamics simulation for the superconducting HWR IFMIF linac. Proc. of IPAC. Vancouver, Canada.Google Scholar
Chauvin, N., Nghiem, P.A.P., Comunian, M., Delferrière, O.Duperrier, R., Monsier, A., Oliver, C.Uriot, D. (2011). Start-to-end beam dynamics simulation for the prototype accelerator of the IFMIF/EVEDA project. Proc. of IPAC. San Sebastián, Spain.Google Scholar
Chauvin, N., Delferrière, O., Duperrier, R., Gobin, R., Nghiem, P.A.P. & Uriot, D. (2012). Transport of intense ion beams and space charge compensation issues in low energy beam lines. Rev. Sci. Instru. 83, 02B320.Google Scholar
Comunian, M., Fagotti, E., Pisent, A. & Posocco, P.A. (2008). Beam dynamics of the IFMIF-EVEDA RFQ. Proc. of IPAC. Genoa, Italy.Google Scholar
Delferrière, O., De Menezes, D., Gobin, R., Harrault, F. & Tuske, O. (2008). Electron cyclotron resonance 140 mA D+ beam extraction optimization for IFMIF EVEDA accelerator. Rev. Sci. Instru. 79, 02B723.CrossRefGoogle Scholar
Duperrier, R., Pichoff, N.Uriot, D. (2002). CEA Saclay Codes Review for High Intensities Linacs Computation. Berlin: Springer.Google Scholar
Duperrier, R., Payet, J. & Uriot, D. (2004). The IFMIF high energy beam transport line. Proc. of EPAC. Lucerne, Switzerland.Google Scholar
Hofmann, I., Franchetti, G., Boine-Frankenheim, O., Qiang, J. & Ryne, R.D. (2003). Space charge resonances in two and three dimensional anisotropic beams. Phys. Rev. ST Accel. Beams 6, 024202.Google Scholar
Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. IEEE 4, 19421948.Google Scholar
Kilpatrick, W.D. (1957). Criterion for vacuum sparking designed to include both rf and dc. Rev. Sci. Instru. 28, 824826.Google Scholar
Marroncle, J., Abbon, P., Egbert, J. & Pomorski, M. (2011). μ-loss detector for IFMIF-EVEDA. Proc. of DIPAC. Hamburg, Germany.Google Scholar
Mosnier, A., Beauvais, P.Y., Brañas, B., Comunian, M., Facco, A., Garin, P., Gobin, R., Gournay, J.F., Heidinger, R., Ibarra, A., Joyer, P., Kimura, H., Kojima, T., Kubo, T., Maebara, S., Marroncle, J., Mendez, P., Nghiem, P.A.P., Ohira, S., Okumura, Y., Orsini, F., Palmieri, A., Pepato, A., Pisent, A., Podadera, I., Sanz, J., Shinto, K., Takahashi, H., Toral, F.,Vermare, C. & Yonemoto, K. (2010). The accelerator prototype of the IFMIF/EVEDA project. Proc. of IPAC. Kyoto, Japan.Google Scholar
Mustapha, B., Xu, J., Ostroumov, P.N. & Carneiro, J.-P. (2009). Large scale simulation of the fermilab 8-GeV H-minus linac: Beam loss studies from machine errors and H- stripping. Proc. of PAC. Vancouver, Canada.Google Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C., Simeoni, W. Jr. & Uriot, D. (2010). The IFMIF-EVEDA challenges and their treatment. Proc. of HB. Morschach, Swizerland.Google Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C., Simeoni, W. Jr. & Uriot, D. (2011 a). Dynamics of the IFMIF very high-intensity beam. Proc. of IPAC. San Sebastián, Spain.Google Scholar
Nghiem, P.A.P., Chauvin, N., Comunian, M., Delferrière, O., Duperrier, R., Mosnier, A., Oliver, C. & Uriot, D. (2011 b). The IFMIF-EVEDA challenges in beam dynamics and their treatment. Nucl. Instru. Meth. Phys. Res. A 654, 6371.Google Scholar
Oliver, C., Brañas, B., Chauvin, N., Ibarra, A., Mosnier, A., Podadera-Aliseda, I. & Uriot, D. (2008). High energy beam transport line for the IFMIF-EVEDA accelerator. Proc. EPAC. Genoa, Italy.Google Scholar
Oliver, C., Brañas, B., Ibarra, A., Nghiem, P.A.P. & Mosnier, A. (2010). Alignment and magnet error tolerances for the high energy beam transport line for the IFMIF-EVEDA accelerator. Proc. of IPAC. Kyoto, Japan.Google Scholar
Simeoni, W. Jr., Nghiem, P.A.P., Uriot, D., Chauvin, N. & Mosnier, A. (2011). Stability charts for the IFMIF SRF-linac. Proc of IPAC. San Sebastián, Spain.Google Scholar
Spädtke, P. (2008). Model for the description of ion beam extraction from electron cyclotron resonance ion sources. Rev Sci. Instrum. 81, 02B725.Google Scholar
Wangler, T.P. (2008). RF Linear Accelerators. New York: Wiley.Google Scholar
Zimmermann, F., Basset, R., Bellodi, G., Benedetto, E., Dorda, U., Giovannozzi, M., Papaphilippou, Y., Pieloni, T.Ruggiero, F., Rumolo, G., Schmidt, F., Todesco, E.,Zotter, B.W., Payet, J., Bartolini, R., Farvacque, L., Sen, T., Chin, Y.H., Ohmi, K., Oide, K., Furman, M., Qiang, J, Sabbi, G.L., Seidt, P.A., Vay, J.L., Friedman, A., Grote, D.P., Cousineau, S.M., Danilov, V., Holmes, J.A., Shishlo, A., Kim, E.S., Cai, Y., Pivi, M., Kaltchev, D.I., Abell, D.T., Katsouleas, Thomas C., Boine-Frankenheim, O., Franchetti, G., Hofmann, I., Machida, S. & Wei, J. (2006). Accelerator physics code web repository. Proc. of EPAC. Edinburgh, Scotland.Google Scholar