Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T02:07:20.519Z Has data issue: false hasContentIssue false

Collisional and collisionless beam plasma instabilities

Published online by Cambridge University Press:  07 September 2010

Antoine Bret*
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
*
Address correspondence and reprint requests to: Antoine Bret, ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain. E-mail: antoineclaude.bret@uclm.es

Abstract

Collisions are a key issue regarding the instabilities involved in the fast ignition scenario for inertial confinement fusion. Because of the plasma density gradient through which the relativistic electron beam travels, unstable modes are collisionless at the beginning of the path, and collisional near the target core. While some works have been done on both regimes, the transition from the former to the later remains unclear. By implementing a hot fluid model accounting for a collisional return current, a theory is presented which bridges between the two regimes. The transition from one regime to the other is detailed in terms of the beam-to-plasma density ratio and the collision frequency. Purely collisional modes are found to arise at very low k, compared to the collisionless ones, and generate beam skin-depth size structures in accordance to previous works on resistive filamentation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bret, A., Firpo, M.-C. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269.CrossRefGoogle Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2007). About the most unstable modes encountered in beam plasma interaction physics. Laser Part. Beams 25, 117.CrossRefGoogle Scholar
Bret, A., Firpo, M. & Deutsch, C. (2005). Bridging the gap between two stream and filamentation instabilities. Laser Part. Beams 23, 375.CrossRefGoogle Scholar
Bret, A., Gremillet, L. & Bénisti, D. (2010). Exact relativistic kinetic theory of the full unstable spectrum of an electron-beam-plasma system with maxwell-jüttner distribution functions. Phys. Rev. E 81, 036402.CrossRefGoogle ScholarPubMed
Bret, A., Gremillet, L., Bénisti, D. & Lefebvre, E. (2008). Exact relativistic kinetic theory of an electron-beam-plasma system: Hierarchy of the competing modes in the system-parameter space. Phys. Rev. Lett. 100, 205008.CrossRefGoogle ScholarPubMed
Bret, A., Marín Fernández, F.J. & Anfray, J.M. (2009). Unstable spectrum of a relativistic electron beam interacting with a quantum collisional plasma: application to the fast ignition scenario. Plasma Phys. Contr. Fusion 51, 075011.CrossRefGoogle Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115.CrossRefGoogle Scholar
Gremillet, L., Bonnaud, G. & Amiranoff, F. (2002). Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas 9, 941.CrossRefGoogle Scholar
Honrubia, J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129.CrossRefGoogle Scholar
Huba, J.D. (2004). NRL Plasma Formulary. Washington, DC: Naval Research Laboratory.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798.CrossRefGoogle ScholarPubMed
Pegoraro, F. & Porcelli, F. (1984). Equation of state for relativistic plasma waves. Phys. Fluids 27, 1665.CrossRefGoogle Scholar
Ren, C., Tzoufras, M., Tonge, J., Mori, W.B., Tsung, F.S., Fiore, M., Fonseca, R.A., Silva, L.O., Adam, J.-C. & Heron, A. (2006). A global simulation for laser-driven mev electrons in 50- mu m-diameter fast ignition targets. Phys. Plasmas 13, 056308.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95.CrossRefGoogle Scholar
Siambis, J. G. (1979). Adiabatic equations of state for intense relativistic particle beams. Phys. Fluids 22, 1372.CrossRefGoogle Scholar
Tabak, M., Clark, D.S., Hatchett, S.P., Key, M.H., Lasinski, B.F., Snavely, R.A., Wilks, S.C., Town, R.P.J., Stephens, R., Campbell, E.M., Kodama, R., Mima, K., Tanaka, K.A., Atzeni, S. & Freeman, R. (2005). Review of progress in fast ignition. Phys. Plasmas 12, 057305.CrossRefGoogle Scholar