Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T20:13:55.464Z Has data issue: false hasContentIssue false

Absolute study of spectra from laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

Yao-Lin Li
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P.O. Box 800–211, Shanghai 201800, People's Republic of China
Xiao-Fang Wang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P.O. Box 800–211, Shanghai 201800, People's Republic of China
Zhi-Zhan Xu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P.O. Box 800–211, Shanghai 201800, People's Republic of China
Shi-Sheng Chen
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P.O. Box 800–211, Shanghai 201800, People's Republic of China
Ai-Di Qian
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P.O. Box 800–211, Shanghai 201800, People's Republic of China

Abstract

A method of absolutely unfolding the atomic spectrum by a pinhole transmission grating spectrometer (TGS) is discussed in detail. The numerical process considers both the factors of higher-dispersive-order overlapping of TGS and source-size widening effects. Real soft-X-ray spectra of aluminum, copper, and gold plasmas are presented of experiments performed on the Six-Beam Laser Facility at the Shanghai Institute of Optics and Fine Mechanics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alaterre, P. et al. 1986 Phys. Rev. A 34, 4184.CrossRefGoogle Scholar
Cauthier, J. C. 1987 Proc. Soc. Phioto-Opt. Instrum. Eng. 831, 2.Google Scholar
Ceglio, N. M. et al. 1983 Appl. Opt. 22, 318.CrossRefGoogle Scholar
Duston, D. & Davis, J. 1981 Phys. Rev. A 23, 2602.CrossRefGoogle Scholar
Fedosejevs, R. et al. 1987 Proc. Soc. Photo-Opt. Instrum. Eng. 831, 66.Google Scholar
Henke, B. L. et al. 1984 J. Opt. Soc. Am. B 1, 828.CrossRefGoogle Scholar
Kauffman, R. L. et al. 1983 IEEE J. Quantum Electron. QE-19, 616.CrossRefGoogle Scholar
Kishimoto, T. 1985 Max-Planck-Institut für Quantenoptik Report No. MPQ108.Google Scholar
Li, Y. L. et al. 1989 Acta Opt. Sin. 9, 550.Google Scholar
Li, Y. L. et al. 1990 Phys. Rev. A 41, 4528.CrossRefGoogle Scholar
Mead, W. C. et al. 1984 Phys. Fluids 27, 2316.CrossRefGoogle Scholar
Mochizuki, T. et al. 1986 Phys. Rev. A 33, 525.CrossRefGoogle Scholar
Pachtman, A. et al. 1988 In Proceedings of the Second Symposium on Plasma-Wave and Plasma-Matter Interaction, Guangzhou, China, Paper D-l (unpublished).Google Scholar
Pakula, R. 1985 Max-Planck-Institut für Quantenoptik Report No. MPQ95.Google Scholar
Schnopper, H. et al. 1977 Appl. Opt. 16, 1088.CrossRefGoogle Scholar
Tachyn, R. & Lindau, I. 1981 Low Energy X-Ray Diagnostics (American Institute of Physics, New York), p. 323.Google Scholar
Xu, Z. Z. et al. 1980 Acta Phys. Sin. 29, 439.Google Scholar
Xu, Z. Z. et al. 1989 Chin. Lasers 16, 128.Google Scholar