Hostname: page-component-68c7f8b79f-7wx25 Total loading time: 0 Render date: 2026-01-01T01:52:56.325Z Has data issue: false hasContentIssue false

Productive knowledge and item-specific knowledge trade off as a function of frequency in multiword expression processing

Published online by Cambridge University Press:  01 January 2026

Emily Morgan*
Affiliation:
University of California, Davis
Roger Levy*
Affiliation:
Massachusetts Institute of Technology
Get access

Abstract

We report an experiment eliciting ordering preferences for BINOMIAL EXPRESSIONS (e.g. bread and butter vs. butter and bread) in order to investigate the respective influences of productive and item-specific knowledge in language processing. Binomial ordering preferences reflect both (i) productive constraints involving phonological, semantic, and lexical properties, and (ii) item-specific relative frequencies. Bayesian and exemplar-based computational models of acquisition and use predict influences of both productive and item-specific knowledge on ordering preferences, with item-specific knowledge playing a smaller role the lower the expression's overall frequency. Our results confirm this prediction, but also reveal a role of item-specific knowledge even for binomials with overall frequency less than one in ten million. These findings bring a quantitative perspective to the debate over the roles of productive and item-specific knowledge in language.

Information

Type
Research Report
Copyright
Copyright © 2024 Linguistic Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

This work was funded by the UC Davis Society of Hellman Fellows Program (to EM), the UC Davis College of Letters and Science (to EM), and the National Science Foundation (BCS–1551866 to RL). We would like to thank Cherise Cenon, Gillian Nelson, and Cindy Qin for their contributions to constructing the experimental materials and to data collection.

References

Alegre, Maria, and Gordon, Peter. 1999. Frequency effects and the representational status of regular inflections. Journal of Memory and Language 40(1). 4161. DOI: 10.1006/jmla.1998.2607.CrossRefGoogle Scholar
Ambridge, Ben. 2020a. Abstractions made of exemplars or ‘You're all right, and I've changed my mind’: Response to commentators. First Language 40(5–6). 640–59. DOI: 10.1177/0142723720949723.10.1177/0142723720949723CrossRefGoogle Scholar
Ambridge, Ben. 2020b. Against stored abstractions: A radical exemplar model of language acquisition. First Language 40(5–6). 509–59. DOI: 10.1177/0142723719869731.CrossRefGoogle Scholar
Amenta, Simona, and Crepaldi, Davide. 2012. Morphological processing as we know it: An analytical review of morphological effects in visual word identification. Frontiers in Psychology 3:00232. DOI: 10.3389/fpsyg.2012.00232.CrossRefGoogle Scholar
Arnon, Inbal, and Priva, Uriel Cohen. 2013. More than words: The effect of multi-word frequency and constituency on phonetic duration. Language and Speech 56(3). 349–71. DOI: 10.1177/0023830913484891.10.1177/0023830913484891CrossRefGoogle ScholarPubMed
Arnon, Inbal, and Snider, Neal. 2010. More than words: Frequency effects for multi-word phrases. Journal of Memory and Language 62(1). 6782. DOI: 10.1016/j.jml.2009.09.005.10.1016/j.jml.2009.09.005CrossRefGoogle Scholar
Austin, Alison C., Schuler, Kathryn D., Furlong, Sarah; and Newport, Elissa L.. 2022. Learning a language from inconsistent input: Regularization in child and adult learners. Language Learning and Development 18(3). 249–77. DOI: 10.1080/15475441.2021.1954927.10.1080/15475441.2021.1954927CrossRefGoogle ScholarPubMed
Baayen, Harald, Dijkstra, Ton; and Schreuder, Robert. 1997. Singulars and plurals in Dutch: Evidence for a parallel dual-route model. Journal of Memory and Language 37(1). 94117. DOI: 10.1006/jmla.1997.2509.10.1006/jmla.1997.2509CrossRefGoogle Scholar
Bannard, Colin, and Matthews, Danielle. 2008. Stored word sequences in language learning: The effect of familiarity on children's repetition of four-word combinations. Psychological Science 19(3). 241–48. DOI: 10.1111/j.1467-9280.2008.02075.x.CrossRefGoogle ScholarPubMed
Barr, Dale J., Levy, Roger, Scheepers, Christoph; and Tily, Harry J.. 2013. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language 68(3). 255–78. DOI: 10.1016/j.jml.2012.11.001.CrossRefGoogle ScholarPubMed
Batali, John. 2002. The negotiation and acquisition of recursive grammars as a result of competition among exemplars. Linguistic evolution through language acquisition, ed. by Briscoe, Ted, 111–72. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511486524.005.Google Scholar
Benor, Sarah, and Levy, Roger. 2006. The chicken or the egg? A probabilistic analysis of English binomials. Language 82(2). 233–78. DOI: 10.1353/lan.2006.0077.CrossRefGoogle Scholar
Bickerton, Derek. 1981. Roots of language. Ann Arbor, MI: Karoma.Google Scholar
Bod, Rens. 1998. Beyond grammar. Stanford, CA: CSLI Publications.Google Scholar
Bod, Rens. 2008. The data-oriented parsing approach: Theory and application. Computational intelligence: A compendium (Studies in computational intelligence 115), ed. by Fulcher, John and Jain, Lakhmi C., 307–48. Berlin: Springer. DOI: 10.1007/978-3-540-78293-3_7.Google Scholar
Bod, Rens, Scha, Remko; and Sima'an, Khalil. 2003. Data-oriented parsing. Stanford, CA: CSLI Publications.Google Scholar
Bridgwater, Emma, Kyröläinen, Aki-Juhani; and Kuperman, Victor. 2019. The influence of syntactic expectations on reading comprehension is malleable and strategic: An eye-tracking study of English dative alternation. Canadian Journal of Experimental Psychology 73(3). 179–92. DOI: 10.1037/cep0000173.CrossRefGoogle ScholarPubMed
Burani, Cristina, and Caramazza, Alfonso. 1987. Representation and processing of derived words. Language and Cognitive Processes 2(3–4). 217–27. DOI: 10.1080/01690968708406932.10.1080/01690968708406932CrossRefGoogle Scholar
Burani, Cristina, Salmaso, Dario; and Caramazza, Alfonso. 1984. Morphological structure and lexical access. Visible Language 18(4). 348–58. Online: https://journals.uc.edu/index.php/vl/article/view/5394.Google Scholar
Bybee, Joan. 2001. Phonology and language use. Cambridge: Cambridge University Press.10.1017/CBO9780511612886CrossRefGoogle Scholar
Bybee, Joan. 2006. From usage to grammar: The mind's response to repetition. Language 82(4). 711–33. DOI: 10.1353/lan.2006.0186.10.1353/lan.2006.0186CrossRefGoogle Scholar
Bybee, Joan, and Scheibman, Joanne. 1999. The effect of usage on degrees of constituency: The reduction of don't in English. Linguistics 37(4). 575–96. DOI: 10.1515/ling.37.4.575.CrossRefGoogle Scholar
Bybee, Joan, and Thompson, Sandra. 1997. Three frequency effects in syntax. Berkeley Linguistics Society 23(1). 378–88. DOI: 10.3765/bls.v23i1.1293.Google Scholar
Carlini, Nicholas, Liu, Chang, Erlingsson, Úlfar, Kos, Jernej; and Song, Dawn. 2019. The secret sharer: Evaluating and testing unintended memorization in neural networks. Proceedings of the 28th USENIX Security Symposium, Santa Clara, 267–84. Online: https://www.usenix.org/system/files/sec19-carlini.pdf.Google Scholar
Carrol, Gareth, and Conklin, Kathy. 2020. Is all formulaic language created equal? Unpacking the processing advantage for different types of formulaic sequences. Language and Speech 63(1). 95122. DOI: 10.1177/0023830918823230.10.1177/0023830918823230CrossRefGoogle ScholarPubMed
Chantavarin, Suphasiree, Morgan, Emily; and Ferreira, Fernanda. 2022. Robust processing advantage for binomial phrases with variant conjunctions. Cognitive Science 46(9):e13187. DOI: 10.1111/cogs.13187.10.1111/cogs.13187CrossRefGoogle ScholarPubMed
Chomsky, Noam. 1995. The minimalist program. Cambridge, MA: MIT Press.Google Scholar
Colé, Pascale, Beauvillain, Cécile; and Segui, Juan. 1989. On the representation and processing of prefixed and suffixed derived words: A differential frequency effect. Journal of Memory and Language 28(1). 113. DOI: 10.1016/0749-596X(89)90025-9.CrossRefGoogle Scholar
Conrad, Susan, and Biber, Douglas. 2005. The frequency and use of lexical bundles in conversation and academic prose. Lexicographica 20(2004). 5671. DOI: 10.1515/9783484604674.56.10.1515/9783484604674.56CrossRefGoogle Scholar
Cooper, William E., and Ross, John Robert. 1975. World order. Chicago Linguistic Society (Parasession on functionalism) 11(2). 63111.Google Scholar
Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton; and Toutanova, Kristina. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 [cs.CL]. DOI: 10.48550/arXiv.1810.04805.CrossRefGoogle Scholar
Elman, Jeffrey L. 2003. Generalization from sparse input. Chicago Linguistic Society 38. 175200.Google Scholar
Everaert, Martin B. H., Huybregts, Marinus A. C., Chomsky, Noam, Berwick, Robert C.; and Bolhuis, Johan J.. 2015. Structures, not strings: Linguistics as part of the cognitive sciences. Trends in Cognitive Sciences 19(12). 729–43. DOI: 10.1016/j.tics.2015.09.008.CrossRefGoogle Scholar
Feldman, Vitaly, and Zhang, Chiyuan. 2020. What neural networks memorize and why: Discovering the long tail via influence estimation. Proceedings of the International Conference on Neural Information Processing Systems 33. 2881–19. Online: https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf.Google Scholar
Fenk-Oczlon, Gertraud. 1989. Word frequency and word order in freezes. Linguistics 27(3). 517–56. DOI: 10.1515/ling.1989.27.3.517.10.1515/ling.1989.27.3.517CrossRefGoogle Scholar
Ferdinand, Vanessa, Kirby, Simon; and Smith, Kenny. 2019. The cognitive roots of regularization in language. Cognition 184. 5368. DOI: 10.1016/j.cognition.2018.12.002.10.1016/j.cognition.2018.12.002CrossRefGoogle ScholarPubMed
Gahl, Susanne, and Yu, Alan C. L.. 2006. Introduction to the special issue on exemplar-based models in linguistics. The Linguistic Review 23(3). 213–16. DOI: 10.1515/TLR.2006.007.10.1515/TLR.2006.007CrossRefGoogle Scholar
Gentner, Dedre, and Hoyos, Christian. 2017. Analogy and abstraction. Topics in Cognitive Science 9(3). 672–93. DOI: 10.1111/tops.12278.10.1111/tops.12278CrossRefGoogle ScholarPubMed
Goldberg, Adele E. 2003. Constructions: A new theoretical approach to language. Trends in Cognitive Sciences 7(5). 219–24. DOI: 10.1016/S1364-6613(03)00080-9.10.1016/S1364-6613(03)00080-9CrossRefGoogle ScholarPubMed
Goldwater, Sharon, Griffiths, Thomas L.; and Johnson, Mark. 2009. A Bayesian framework for word segmentation: Exploring the effects of context. Cognition 112(1). 2154. DOI: 10.1016/j.cognition.2009.03.008.CrossRefGoogle ScholarPubMed
Gordon, Peter, and Alegre, Maria. 1999. Is there a dual system for regular inflections? Brain and Language 68(1–2). 212–17. DOI: 10.1006/brln.1999.2082.CrossRefGoogle Scholar
Greber, Carole, and Frauenfelder, Uli H.. 1999. On the locus of morphological effects in spoken-word recognition: Before or after lexical identification? Brain and Language 68(1). 4653. DOI: 10.1006/brln.1999.2083.10.1006/brln.1999.2083CrossRefGoogle ScholarPubMed
Hare, Mary, Elman, Jeffrey L.; and Daugherty, Kim G.. 1995. Default generalisation in connectionist networks. Language and Cognitive Processes 10(6). 601–30. DOI: 10.1080/01690969508407115.10.1080/01690969508407115CrossRefGoogle Scholar
Hauser, Marc D., Chomsky, Noam; and Fitch, W. Tecumseh. 2002. The faculty of language: What is it, who has it, and how did it evolve? Science 298(5598). 1569–97. DOI: 10.1126/science.298.5598.1569.CrossRefGoogle ScholarPubMed
Hay, Jennifer, and Bresnan, Joan. 2006. Spoken syntax: The phonetics of giving a hand in New Zealand English. The Linguistic Review 23(3). 129. DOI: 10.1515/TLR.2006.013.10.1515/TLR.2006.013CrossRefGoogle Scholar
Hudson Kam, Carla L., and Newport, Elissa L.. 2005. Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. Language Learning and Development 1(2). 151–95. DOI: 10.1080/15475441.2005.9684215.10.1080/15475441.2005.9684215CrossRefGoogle Scholar
Inhoff, Albrecht Werner, and Rayner, Keith. 1986. Parafoveal word processing during eye fixations in reading: Effects of word frequency. Perception & Psychophysics 40(6). 431–39. DOI: 10.3758/BF03208203.10.3758/BF03208203CrossRefGoogle ScholarPubMed
Jackendoff, Ray. 2002. What's in the lexicon? Storage and computation in the language faculty, ed. by Nooteboom, Sieb, Weerman, Fred, and Wijnen, Frank, 2358. Dordrecht: Springer. DOI: 10.1007/978-94-010-0355-1_2.CrossRefGoogle Scholar
Jackendoff, Ray. 2007. A parallel architecture perspective on language processing. Brain Research 1146. 222. DOI: 10.1016/j.brainres.2006.08.111.CrossRefGoogle ScholarPubMed
Jackendoff, Ray, and Audring, Jenny. 2018. Relational morphology in the parallel architecture. The Oxford handbook of morphological theory, ed. by Audring, Jenny and Masini, Francesca, 390408. Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/9780199668984.013.33.Google Scholar
Janssen, Niels, and Barber, Horacio A.. 2012. Phrase frequency effects in language production. PLoS ONE 7(3):e33202. DOI: 10.1371/journal.pone.0033202.10.1371/journal.pone.0033202CrossRefGoogle ScholarPubMed
Johnson, Keith. 1997. The auditory/perceptual basis for speech segmentation. OSU Working Papers in Linguistics 50. 101–13. Online: http://hdl.handle.net/1811/81782.Google Scholar
Johnson, Keith. 2006. Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. Journal of Phonetics 34(4). 485–99. DOI: 10.1016/j.wocn.2005.08.004.10.1016/j.wocn.2005.08.004CrossRefGoogle Scholar
Johnson, Mark, Griffiths, Thomas L.; and Goldwater, Sharon. 2007. Adaptor grammars: A framework for specifying compositional nonparametric Bayesian models. Proceedings of Advances in Neural Information Processing Systems 19. 641–48. Online: https://ieeexplore.ieee.org/document/6287314.Google Scholar
Kapatsinski, Vsevolod, and Radicke, Joshua. 2009. Frequency and the emergence of prefabs. Formulaic language, vol. 2: Acquisition, loss, psychological reality, and functional explanations, ed. by Corrigan, Roberta, Moravcsik, Edith A., Ouali, Hamid, and Wheatley, Kathleen, 499520. Amsterdam: John Benjamins.10.1075/tsl.83.14kapCrossRefGoogle Scholar
Kemp, Charles, Perfors, Andrew; and Tenenbaum, Joshua B.. 2007. Learning overhypotheses with hierarchical Bayesian models. Developmental Science 10(3). 307–21. DOI: 10.1111/j.1467-7687.2007.00585.x.10.1111/j.1467-7687.2007.00585.xCrossRefGoogle ScholarPubMed
Kirby, Simon. 2001. Spontaneous evolution of linguistic structure—An iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary Computation 5(2). 102–10. DOI: 10.1109/4235.918430.10.1109/4235.918430CrossRefGoogle Scholar
Langacker, Ronald W. 1987. Foundations of cognitive grammar, vol. 1: Theoretical prerequisites. Stanford, CA: Stanford University Press.Google Scholar
Levy, Roger. 2008. Expectation-based syntactic comprehension. Cognition 106(3). 1126–67. DOI: 10.1016/j.cognition.2007.05.006.10.1016/j.cognition.2007.05.006CrossRefGoogle ScholarPubMed
Levy, Roger, Fedorenko, Evelina, Breen, Mara; and Gibson, Edward. 2012. The processing of extraposed structures in English. Cognition 122(1). 1236. DOI: 10.1016/j.cognition.2011.07.012.10.1016/j.cognition.2011.07.012CrossRefGoogle ScholarPubMed
Linzen, Tal, Dupoux, Emmanuel; and Goldberg, Yoav. 2016. Assessing the ability of LSTMs to learn syntax-sensitive dependencies. Transactions of the Association for Computational Linguistics 4. 521–35. DOI: 10.1162/tacl_a_00115.10.1162/tacl_a_00115CrossRefGoogle Scholar
Lohmann, Arne, and Takada, Tayo. 2014. Order in NP conjuncts in spoken English and Japanese. Lingua 152. 4864. DOI: 10.1016/j.lingua.2014.09.011.CrossRefGoogle Scholar
Mahowald, Kyle, Kachergis, George; and Frank, Michael C.. 2020. What counts as an exemplar model, anyway? A commentary on Ambridge (2020). First Language 40(5–6). 608–11. DOI: 10.1177/0142723720905920.10.1177/0142723720905920CrossRefGoogle Scholar
Malkiel, Yakov. 1959. Studies in irreversible binomials. Lingua 8. 113–60. DOI: 10.1016/0024-3841(59)90018-X.10.1016/0024-3841(59)90018-XCrossRefGoogle Scholar
Manning, Christopher D., Clark, Kevin, Hewitt, John, Khandelwal, Urvashi; and Levy, Omer. 2020. Emergent linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the National Academy of Sciences 117(48). 30046–54. DOI: 10.1073/pnas.1907367117.10.1073/pnas.1907367117CrossRefGoogle ScholarPubMed
Marr, David. 1982. Vision: A computational investigation into the human representation and processing of visual information. Cambridge, MA: MIT Press.Google Scholar
McClelland, James L. 2015. Capturing gradience, continuous change, and quasi-regularity in sound, word, phrase, and meaning. The handbook of language emergence, ed. by MacWhinney, Brian and O'Grady, William, 5380. Oxford: Wiley Blackwell. DOI: 10.1002/9781118346136.ch2.10.1002/9781118346136.ch2CrossRefGoogle Scholar
Meunier, Fanny, and Segui, Juan. 1999. Morphological priming effect: The role of surface frequency. Brain and Language 68(1–2). 5460. DOI: 10.1006/brln.1999.2098.10.1006/brln.1999.2098CrossRefGoogle ScholarPubMed
Mollin, Sandra. 2012. Revisiting binomial order in English. English Language and Linguistics 16(1). 81103. DOI: 10.1017/S1360674311000293.10.1017/S1360674311000293CrossRefGoogle Scholar
Mollin, Sandra. 2014. The (ir)reversibility of English binomials. Amsterdam: John Benjamins.10.1075/scl.64CrossRefGoogle Scholar
Morgan, Emily. 2016. Generative and item-specific knowledge of language. San Diego: University of California, San Diego dissertation. Online: http://escholarship.org/uc/item/8qm7n5wz.Google Scholar
Morgan, Emily, and Levy, Roger. 2015. Modeling idiosyncratic preferences: How generative knowledge and expression frequency jointly determine language structure. Proceedings of the Annual Meeting of the Cognitive Science Society 37. 1649–95. Online: https://escholarship.org/uc/item/7rm1r6jh.Google Scholar
Morgan, Emily, and Levy, Roger. 2016a. Abstract knowledge versus direct experience in processing of binomial expressions. Cognition 157(C). 384402. DOI: 10.1016/j.cognition.2016.09.011.10.1016/j.cognition.2016.09.011CrossRefGoogle Scholar
Morgan, Emily, and Levy, Roger. 2016b. Frequency-dependent regularization in iterated learning. The evolution of language: Proceedings of the 11th International Conference (EVOLANG11). Online: http://evolang.org/neworleans/papers/193.html.Google Scholar
O'Donnell, Timothy. 2015. Productivity and reuse in language: A theory of linguistic computation and storage. Cambridge, MA: MIT Press.10.7551/mitpress/9780262028844.001.0001CrossRefGoogle Scholar
OpenAI. 2023. ChatGPT [Computer software]. Online: https://chat.openai.com/chat.Google Scholar
Perfors, Andrew. 2016. Adult regularization of inconsistent input depends on pragmatic factors. Language Learning and Development 12(2). 138–55. DOI: 10.1080/15475441.2015.1052449.10.1080/15475441.2015.1052449CrossRefGoogle Scholar
Perfors, Andrew, Tenenbaum, Joshua B.; and Wonnacott, Elizabeth. 2010. Variability, negative evidence, and the acquisition of verb argument constructions. Journal of Child Language 37(3). 607–42. DOI: 10.1017/S0305000910000012.10.1017/S0305000910000012CrossRefGoogle ScholarPubMed
Pierrehumbert, Janet. 2000. Exemplar dynamics: Word frequency, lenition and contrast. Frequency and the emergence of linguistic structure, ed. by Bybee, Joan and Hopper, Paul, 137–57. Amsterdam: John Benjamins.Google Scholar
Pink er, Steven. 1991. Rules of language. Science 253(5019). 530–35. DOI: 10.1126/science.1857983.Google Scholar
Pinker, Steven. 2000. Words and rules. New York: Harper Perennial.Google Scholar
Pinker, Steven, and Ullman, Michael T.. 2002. The past and future of the past tense. Trends in Cognitive Sciences 6(11). 456–63. DOI: 10.1016/S1364-6613(02)01990-3.CrossRefGoogle ScholarPubMed
Post, Matt, and Gildea, Daniel. 2013. Bayesian tree substitution grammars as a usage-based approach. Language and Speech 56(3). 291308. DOI: 10.1177/0023830913484901.10.1177/0023830913484901CrossRefGoogle ScholarPubMed
Rayner, Keith, and Duffy, Susan A.. 1986. Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition 14(3). 191201. DOI: 10.3758/BF03197692.10.3758/BF03197692CrossRefGoogle ScholarPubMed
Rayner, Keith, Sereno, Sara C.; and Raney, Gary E.. 1996. Eye movement control in reading. Journal of Experimental Psychology: Human Perception and Performance 22(5). 11881200. DOI: 10.1037/0096-1523.22.5.1188.Google ScholarPubMed
Reali, Florencia, and Griffiths, Thomas L.. 2009. The evolution of frequency distributions: Relating regularization to inductive biases through iterated learning. Cognition 111(3). 317–28. DOI: 10.1016/j.cognition.2009.02.012.10.1016/j.cognition.2009.02.012CrossRefGoogle ScholarPubMed
Rumelhart, David E., and McClelland, James L.. 1986. On learning the past tenses of English verbs. Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 2: Psychological and biological models, ed. by McClelland, James L., Rumelhart, David E., and the, PDP Group, Research, 535–51. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/5782.003.0031.Google Scholar
Scha, Remko, Bod, Rens; and Sima'an, Khalil. 1999. A memory-based model of syntactic analysis: Data-oriented parsing. Journal of Experimental & Theoretical Artificial Intelligence 11(3). 409–40. DOI: 10.1080/095281399146481.10.1080/095281399146481CrossRefGoogle Scholar
Schriefers, Herbert, Zwitserlood, Pienie; and Roelofs, Ardi. 1991. The identification of morphologically complex spoken words: Continuous processing or decomposition? Journal of Memory and Language 30(1). 2647. DOI: 10.1016/0749-596X(91)90009-9.10.1016/0749-596X(91)90009-9CrossRefGoogle Scholar
Siyanova-Chanturia, Anna, Conklin, Kathy, Caffarra, Sendy, Kaan, Edith; and van Heuven, Walter J. B.. 2017. Representation and processing of multi-word expressions in the brain. Brain and Language 175. 111–22. DOI: 10.1016/j.bandl.2017.10.004.10.1016/j.bandl.2017.10.004CrossRefGoogle ScholarPubMed
Siyanova-Chanturia, Anna, Conklin, Kathy; and van Heuven, Walter J. B.. 2011. Seeing a phrase ‘time and again’ matters: The role of phrasal frequency in the processing of multiword sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition 37(3). 776–84. DOI: 10.1037/a0022531.Google ScholarPubMed
Sobkowiak, Włodzimierz. 1993. Unmarked-before-marked as a freezing principle. Language and Speech 36(4). 393414. DOI: 10.1177/002383099303600403.CrossRefGoogle Scholar
Swinney, David A., and Cutler, Anne. 1979. The access and processing of idiomatic expressions. Journal of Verbal Learning and Verbal Behavior 18(5). 523–34. DOI: 10.1016/S0022-5371(79)90284-6.10.1016/S0022-5371(79)90284-6CrossRefGoogle Scholar
Taft, Marcus. 1979. Recognition of affixed words and the word frequency effect. Memory & Cognition 7(4). 263–72. DOI: 10.3758/BF03197599.10.3758/BF03197599CrossRefGoogle ScholarPubMed
Tremblay, Antoine, Derwing, Bruce, Libben, Gary; and Westbury, Chris. 2011. Processing advantages of lexical bundles: Evidence from self-paced reading and sentence recall tasks. Language Learning 61(2). 569613. DOI: 10.1111/j.1467-9922.2010.00622.x.10.1111/j.1467-9922.2010.00622.xCrossRefGoogle Scholar
Trueswell, John C., Tanenhaus, Michael K.; and Kello, Christopher. 1993. Verbspecific constraints in sentence processing: Separating effects of lexical preference from garden-paths. Journal of Experimental Psychology: Learning, Memory, and Cognition 19(3). 528–53. DOI: 10.1037/0278-7393.19.3.528.Google ScholarPubMed
Tyler, Lorraine Komisarjevsky, Marslen-Wilson, William, Rentoul, James; and Hanney, Peter. 1988. Continuous and discontinuous access in spoken word-recognition: The role of derivational prefixes. Journal of Memory and Language 27(4). 368–81. DOI: 10.1016/0749-596X(88)90062-9.10.1016/0749-596X(88)90062-9CrossRefGoogle Scholar
Ullman, Michael T. 2001. A neurocognitive perspective on language: The declarative/ procedural model. Nature Reviews Neuroscience 2(10). 717–26. DOI: 10.1038/35094573.10.1038/35094573CrossRefGoogle ScholarPubMed
Ullman, Michael T., Pancheva, Roumyana, Love, Tracy, Yee, Eiling, Swinney, David; and Hickok, Gregory. 2005. Neural correlates of lexicon and grammar: Evidence from the production, reading, and judgment of inflection in aphasia. Brain and Language 93(2). 185238. DOI: 10.1016/j.bandl.2004.10.001.10.1016/j.bandl.2004.10.001CrossRefGoogle ScholarPubMed
van den Bosch, Antal, and Daelemans, Walter. 2013. Implicit schemata and categories in memory-based language processing. Language and Speech 56(3). 309–28. DOI: 10.1177/0023830913484902.10.1177/0023830913484902CrossRefGoogle ScholarPubMed
Vannest, Jennifer, and Boland, Julie E.. 1999. Lexical morphology and lexical access. Brain and Language 68(1–2). 324–32. DOI: 10.1006/brln.1999.2114.10.1006/brln.1999.2114CrossRefGoogle ScholarPubMed
Wood, Simon N. 2017. Generalized additive models: An introduction with R. 2nd edn. New York: Chapman and Hall/CRC.10.1201/9781315370279CrossRefGoogle Scholar
Wray, Alison. 2002. Formulaic language and the lexicon. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511519772.10.1017/CBO9780511519772CrossRefGoogle Scholar
Wurm, Lee H., and Ross, Shannon E.. 2001. Conditional root uniqueness points: Psychological validity and perceptual consequences. Journal of Memory and Language 45(1). 3957. DOI: 10.1006/jmla.2000.2758.10.1006/jmla.2000.2758CrossRefGoogle Scholar
Xu, Fei, and Tenenbaum, Joshua B.. 2007. Word learning as Bayesian inference. Psychological Review 114(2). 245–72. DOI: 10.1037/0033-295X.114.2.245.10.1037/0033-295X.114.2.245CrossRefGoogle ScholarPubMed
Zwitserlood, Pienie. 2004. Sublexical and morphological information in speech processing. Brain and Language 90(1). 368–77. DOI: 10.1016/S0093-934X(03)00448-6.10.1016/S0093-934X(03)00448-6CrossRefGoogle ScholarPubMed
Zwitserlood, Pienie. 2018. Processing and representation of morphological complexity in native language comprehension and production. The construction of words: Advances in construction morphology (Studies in morphology 4), ed. by Booij, Geert, 583602. Cham: Springer International. DOI: 10.1007/978-3-319-74394-3_20.10.1007/978-3-319-74394-3_20CrossRefGoogle Scholar