Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T05:23:42.245Z Has data issue: false hasContentIssue false

What happens to the motor theory of perception when the motor system is damaged?

Published online by Cambridge University Press:  11 March 2014

Alena Stasenko
Affiliation:
Department of Brain & Cognitive Sciences, University of Rochester, USA E-mail: astasenk@caoslab.rochester.edu
Frank E. Garcea
Affiliation:
Department of Brain & Cognitive Sciences, University of Rochester, USA E-mail: garcea@rcbi.rochester.edu
Bradford Z. Mahon
Affiliation:
Meliora Hall, University of Rochester, Rochester, NY 14627-0268, USA; Department of Brain & Cognitive Sciences, University of Rochester, USA; Department of Neurosurgery, University of Rochester Medical Center, USA; Center for Language Sciences, University of Rochester, USA. E-mail: mahon@rcbi.rochester.edu

Abstract

Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

Type
The perspective from apraxia
Copyright
Copyright © UK Cognitive Linguistics Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbib, M. 2010. Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain and Language 112(1). 1224.Google Scholar
Arbib, M. 2012. How the brain got language. New York: Oxford University Press.CrossRefGoogle Scholar
Baker, E., Blumsteim, S. & Goodglass, H.. 1981. Interaction between phonological and semantic factors in auditory comprehension. Neuropsychologia 19(1). 115.CrossRefGoogle ScholarPubMed
Blumstein, S. E. 1991. Phonological aspects of aphasia. In Sarno, M. (ed.), Acquired aphasia, 151180. San Diego: Academic Press.Google Scholar
Blumstein, S. E. 1995. The neurobiology of the sound structure of language. In Gazzaniga, M. (ed.), The cognitive neurosciences, 915929. Cambridge, MA: MIT Press.Google Scholar
Blumstein, S., Cooper, W., Zurif, E. & Caramazza, A.. 1977. The perception and production of voice-onset time in aphasia. Neuropsychologia 15(3). 371383.Google Scholar
Darley, F. 1968. Apraxia of speech: 107 years of terminological confusion. Paper presented at the Annual Convention of the American Speech and Hearing Association, Denver, Colorado.Google Scholar
Diehl, R., Lotto, A. & Holt, L.. 2004. Speech perception. Annual Review of Psychology 55. 149179.Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G.. 1992. Understanding motor events: A neurophysiological study. Experimental Brain Research 91. 176180.CrossRefGoogle ScholarPubMed
Dinstein, I., Thomas, C., Behrmann, M. & Heeger, D.. 2008. A mirror up to nature. Current Biology 18(1). R13R18.CrossRefGoogle ScholarPubMed
Dronkers, N. 1996. A new brain region for coordinating speech articulation. Nature 384(6605). 159161.Google Scholar
Eimas, P., Siqueland, E., Jusczyk, P. & Vigorito, J.. 1971. Speech perception in infants. Science 171(3968). 303306.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G.. 2002. Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience 15(2). 399402.Google Scholar
Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G.. 1995. Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology 73(6). 26082611.Google Scholar
Galantucci, B., Fowler, C. & Turvey, M. T.. 2006. The motor theory of speech perception reviewed. Psychonomic Bulletin & Review 13(3). 361377.Google Scholar
Garcea, F. E., Dombovy, M. & Mahon, B. Z.. 2013. Preserved tool knowledge in the context of impaired action knowledge: Implications for models of semantic memory. Frontiers in Human Neuroscience 7. 118.Google Scholar
Hesslow, G. 2002. Conscious thought as simulation of behavior and perception. Trends in Cognitive Sciences 6(6). 242247.Google Scholar
Hickok, G. 2009. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience 21(7). 12291243.Google Scholar
Hickok, G. 2010. The role of mirror neurons in speech perception and action word semantics. Language and Cognitive Processes 25(6). 128.Google Scholar
Hickok, G., Costanzo, M., Capasso, R. & Miceli, G.. 2011. The role of Broca's area in speech perception: Evidence from aphasia revisited. Brain and Language 119(3). 214220.CrossRefGoogle ScholarPubMed
Hickok, G., Okada, K., Barr, W., Pa, J., Rogalsky, C., Donnelly, K., Barde, L. & Grant, A.. 2008. Bilateral capacity for speech sound processing in auditory comprehension: Evidence from Wada procedures. Brain and Language 107(3). 179184.Google Scholar
Hickok, G & Poeppel, D.. 2004. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92(1–2). 6799.Google Scholar
Hickok, G. & Poeppel, D.. 2007. The cortical organization of speech processing. Nature Reviews Neuroscience 8. 393402.Google Scholar
Johns, D. & Darley, F.. 1970. Phonemic variability in apraxia of speech. Journal of Speech and Hearing Research 13. 556583.Google Scholar
Kiefer, M. & Pulvermüller, F.. 2012. Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex 48(7). 805825.Google Scholar
Kuhl, P. & Miller, J.. 1975. Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science 190(4209). 6972.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M.. 1967. Perception of the speech code. Psychological Review 74(6). 431461.Google Scholar
Liberman, A. M. & Mattingly, I. G.. 1985. The motor theory of speech perception revised. Cognition 21(1). 136.CrossRefGoogle ScholarPubMed
Lotto, A., Hickok, G. & Holt, L.. 2009. Reflections on mirror neurons and speech perception. Trends in Cognitive Science 13(3). 110114.Google Scholar
Mahon, B. & Caramazza, A.. 2005. The orchestration of the sensory-motor systems: Clues from neuropsychology. Cognitive Neuropsychology 22(3). 480494.Google Scholar
Mahon, B. & Caramazza, A.. 2008. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology – Paris 102. 5970.Google Scholar
Meister, I., Wilson, S., Deblieck, C., Wu, A. & Iacoboni, M.. 2007. The essential role of premotor cortex in speech perception. Current Biology 17(19). 16921696.Google Scholar
Moineau, S., Dronkers, N. & Bates, E.. 2005. Exploring the processing continuum of single-word comprehension in aphasia. Journal of Speech, Language, and Hearing Research 48(4). 884896.Google Scholar
Möttönen, R. & Watkins, K.. 2012. Using TMS to study the role of the articulatory motor system in speech perception. Aphasiology 26(9). 11031118.Google Scholar
Negri, G., Rumiati, R., Zadini, A., Ukmar, M., Mahon, B. & Caramazza, A.. 2007. What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology 24(8). 795816.Google Scholar
Pazzaglia, M., Smania, N., Corato, E. & Aglioti, S.. 2008. Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience 28(12). 30303041.Google Scholar
Rapcsak, S., Ochipa, C., Anderson, K. & Poizner, H.. 1995. Progressive ideomotor apraxia: Evidence for a selective impairment of the action production system. Brain and Cognition 27(2). 213236.Google Scholar
Rizzolatti, G. & Arbib, M.. 1998. Language within our grasp. Trends in Neurosciences 21(5). 188194.Google Scholar
Rizzolatti, G. & Craighero, L.. 2004. The mirror-neuron system. Annual Review of Neuroscience 27. 169192.Google Scholar
Rizzolatti, G., Fogassi, L. & Gallese, V.. 2001. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience 2. 661670.Google Scholar
Rogalsky, C., Love, T., Driscoll, D., Anderson, S. & Hickok, G.. 2011. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system. Neurocase 17(2). 178187.Google Scholar
Rothi, L. J. G., Mack, L. & Heilman, K.. 1986. Pantomime agnosia. Journal of Neurology, Neurosurgery, and Psychiatry 49. 451454.CrossRefGoogle ScholarPubMed
Rumiati, R., Zanini, S., Vorano, L. & Shallice, T.. 2001. A form of ideational apraxia as a selective deficit of contention scheduling. Cognitive Neuropsychology 18(7). 617642.Google Scholar
Scheerer, E. 1984. Motor theories of cognitive structure: A historical review. In Prinz, W. & Sanders, W. (eds.), Cognition and motor processes, 7798. Berlin: Springer-Verlag.Google Scholar
Serino, A., De Filippo, L., Casavecchia, C., Coccia, M., Shiffrar, M. & Làdavas, E.. 2009. Lesions to the motor system affect action perception. Journal of Cognitive Neuroscience 22(3). 413426.Google Scholar
Shankweiler, D. & Harris, K.. 1966. An experimental approach to the problems of articulation in aphasia. Cortex 2. 277292.Google Scholar
Square-Storer, P., Darley, F. & Sommers, R.. 1988. Nonspeech and speech processing skills in patients with aphasia and apraxia of speech. Brain and Language 33(1). 6585.Google Scholar
Toni, I., de Lange, F., Noordzij, M. & Hagoort, P.. 2008. Language beyond action. Journal of Physiology – Paris 102(1). 7179.CrossRefGoogle ScholarPubMed