Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T08:47:51.215Z Has data issue: false hasContentIssue false

Kant, Kästner and the Distinction between Metaphysical and Geometric Space

Published online by Cambridge University Press:  29 May 2014

Christian Onof
Affiliation:
Birkbeck College, London Email: c.onof@philosophy.bbk.ac.uk, dennis@transcendentalphilosophyresearch.com
Dennis Schulting
Affiliation:
Birkbeck College, London Email: c.onof@philosophy.bbk.ac.uk, dennis@transcendentalphilosophyresearch.com

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Translation and Introductory Essay
Copyright
Copyright © Kantian Review 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, H., ed. (1973) The Kant–Eberhard Controversy. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Allison, H. (2004) Kant's Transcendental Idealism: An Interpretation and Defense, rev. and expanded edn. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Allison, H. (2012a) ‘Where Have All the Categories Gone? Reflections on Longuenesse's Reading of Kant's Transcendental Deduction’. In Allison (2012c: 31–42).Google Scholar
Allison, H. (2012b) ‘A Response to a Response: Addendum to “Where Have All the Categories Gone?” ’ In Allison (2012c: 43–8).Google Scholar
Allison, H. (2012c) Essays on Kant. Oxford: Oxford University Press.CrossRefGoogle Scholar
Baasner, R. (1991) Abraham Gotthelf Kästner: Aufklärer. Berlin and New York: de Gruyter.Google Scholar
Beiser, F. (1987) The Fate of Reason: German Philosophy from Kant to Fichte. Cambridge, MA: Harvard University Press.Google Scholar
Carson, E. (1997) ‘Kant on Intuition in Geometry’. Canadian Journal of Philosophy, 27/4, 489512.Google Scholar
Dufour, E. (2003) ‘Remarques sur la note du paragraphe 26 de l'Analytique transcendantale: Les interprétations de Cohen et de Heidegger’. Kant-Studien, 94/1, 6979.Google Scholar
Eberhard, J. A. (1789) ‘Von den Begriffen des Raums und der Zeit in Beziehung auf die Gewißheit der menschlichen Erkenntnis’. Philosophisches Magazin, 2/1, 5392.Google Scholar
Fichant, M. (1997a) ‘Sur les articles de Kästner: Présentation’. Philosophie, 56, 312.Google Scholar
Fichant, M. (1997b) ‘ “L'espace est représenté comme une grandeur infinie donnée”: La radicalité de l'esthétique’. Philosophie, 56, 2048.Google Scholar
Friedman, M. (1992) Kant and the Exact Sciences. Cambridge, MA: Harvard University Press.Google Scholar
Friedman, M. (2000) ‘Geometry, Construction, and Intuition in Kant and his Successors’. In G. Sher and R. Tieszen (eds), Between Logic and Intuition: Essays in Honor of Charles Parsons. Cambridge: Cambridge University Press, pp. 186218.Google Scholar
Friedman, M. (2003) ‘Transcendental Philosophy and Mathematical Physics’. Studies in History and Philosophy of Science Part A, 34/1, 2943.Google Scholar
Friedman, M. (2012) ‘Kant on Geometry and Spatial Intuition’. Synthese, 186, 231255.Google Scholar
Gawlina, M. (1996) Das Medusenhaupt der Kritik: Die Kontroverse zwischen Immanuel Kant und Johann August Eberhard. Berlin and New York: de Gruyter.Google Scholar
di Giovanni, G. (2005) Freedom and Religion in Kant and his Immediate Successors. Cambridge: Cambridge University Press.Google Scholar
Grüne, S. (2009) Blinde Anschauung: Die Rolle von Begriffen in Kants Theorie sinnlicher Synthesis. Frankfurt am Main: Klostermann.Google Scholar
Heidegger, M. (1995) Phänomenologische Interpretation von Kants Kritik der reinen Vernunft. Gesamtausgabe, II. Abteilung, Bd. 25. Frankfurt am Main: Klostermann.Google Scholar
Kästner, A. G. (1790a) ‘Was heisst in Euklids Geometrie möglich?’ Philosophisches Magazin, 2/4, 391402.Google Scholar
Kästner, A. G. (1790b) ‘Über den mathematischen Begriff des Raums’. Philosophisches Magazin, 2/4, 403419.Google Scholar
Kästner, A. G. (1790c) ‘Über die geometrischen Axiome’. Philosophisches Magazin, 2/4, 420430.Google Scholar
Kästner, A. G. (1797) Vom ewigen Frieden. Poetische Blumenlese für das Jahr 1797. Göttingen: Göttinger Musen-Almanach.Google Scholar
Kant, I. (1993) Opus Postumum. Ed. and trans. E. Förster and M. Rosen. Cambridge: Cambridge University Press.Google Scholar
Kant, I. (1997) ‘Sur les articles de Kästner’. Ed. and trans. M. Fichant. Philosophie, 56, 1319.Google Scholar
Kant, I. (1998) Critique of Pure Reason. Ed. and trans. P. Guyer and A. Wood. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kant, I. (2001) Critique of the Power of Judgment. Ed. P. Guyer and trans. P. Guyer and E. Matthews. Cambridge: Cambridge University Press.Google Scholar
Kjosavik, F. (2009) ‘Kant on Geometrical Intuition and the Foundations of Mathematics’. Kant-Studien, 100/1, 127.Google Scholar
Kuehn, M. (2001) Kant: A Biography. Cambridge: Cambridge University Press.Google Scholar
La Rocca, C., ed. (1994) Contro Eberhard: La Polemica sulla Critica della Ragion Pura. Pisa: Giardini.Google Scholar
Longuenesse, B. (1998a) Kant and the Capacity to Judge: Sensibility and Discursivity in the Transcendental Analytic of the Critique of Pure Reason. Trans. C. T. Wolfe. Princeton: Princeton University Press.CrossRefGoogle Scholar
Longuenesse, B. (1998b) ‘Synthèse et donation: Réponse à Michel Fichant’. Philosophie, 60, 7991, [also in translation in Longuenesse 2005: 64–78].Google Scholar
Longuenesse, B. (2005) Kant on the Human Standpoint. Cambridge: Cambridge University Press.Google Scholar
Manders, K. (2008) ‘The Euclidean Diagram’. In P. Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford: Oxford University Press, pp. 80133.Google Scholar
Onof, C.Schulting, D. (forthcoming in Philosophical Review) ‘Space as “Form of Intuition” and as “Formal Intuition”: On the Note to B160 in Kant's Critique of Pure Reason’.Google Scholar
Parsons, C. (1992) ‘The Transcendental Aesthetic’. In P. Guyer (ed.), The Cambridge Companion to Kant. Cambridge: Cambridge University Press, pp. 62100.Google Scholar
Patton, L. (2011) ‘The Paradox of Infinite Given Magnitude: Why Kantian Epistemology Needs Metaphysical Space’. Kant-Studien, 102/3, 273289.Google Scholar
Reinhold, K. L. (2005) Letters on the Kantian Philosophy. Ed. and trans. K. Ameriks. Cambridge: Cambridge University Press.Google Scholar
Sassen, B., ed. (2000) Kant's Early Critics: The Empiricist Critique of the Theoretical Philosophy. Cambridge: Cambridge University Press.Google Scholar
Shabel, L. (2003) Mathematics in Kant's Critical Philosophy: Reflections on Mathematical Practice. New York and London: Routledge.Google Scholar
Sinaceur, M.-A. (1974) ‘Philosophie et mathématiques: A. G. Kästner et G. W. Leibniz’. In Akten des II. Internationalen Leibniz-Kongresses, vol. 2. Wiesbaden: Franz Steiner, pp. 93103.Google Scholar
Warda, A. (1922) Immanuel Kants Bücher. Berlin: Martin Breslauer.Google Scholar