Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T22:27:20.816Z Has data issue: false hasContentIssue false

The Impact of Climate Change on Viticulture and Wine Quality*

Published online by Cambridge University Press:  14 June 2016

Cornelis van Leeuwen*
Affiliation:
Bordeaux Sciences Agro, ISVV, UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne n° 1287, F-33140 Villenave d'Ornon, France
Philippe Darriet
Affiliation:
Université de Bordeaux, Unité de recherche Œnologie, ESC 1366 INRA, ISVV, F-33140 Villenave d'Ornon, France; e-mail: philippe.darriet@u-bordeaux2.fr.
*
(corresponding author). e-mail: vanleeuwen@agro-bordeaux.fr

Abstract

Climate change is a major challenge in wine production. Temperatures are increasing worldwide, and most regions are exposed to water deficits more frequently. Higher temperatures trigger advanced phenology. This shifts the ripening phase to warmer periods in the summer, which will affect grape composition, in particular with respect to aroma compounds. Increased water stress reduces yields and modifies fruit composition. The frequency of extreme climatic events (hail, flooding) is likely to increase. Depending on the region and the amount of change, this may have positive or negative implications on wine quality. Adaptation strategies are needed to continue to produce high-quality wines and to preserve their typicity according to their origin in a changing climate. The choice of plant material is a valuable resource to implement these strategies. (JEL Classifications: Q13, Q54)

Type
Articles
Copyright
Copyright © American Association of Wine Economists 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

We thank Marc and Matthieu Dubernet for the data on grape composition in the Languedoc (Figure 2) and Alexandre Pons for the massoia lactone data (Figure 4).

References

Albuquerque, R. (1993). Réponse des cépages de Vitis vinifera L. aux variations de l'environnement: effets de la contrainte hydrique sur la photosynthèse, la photorespiration et la teneur en acide abscissique des feuilles. PhD diss., Bordeaux University.Google Scholar
Ashenfelter, O., and Storchmann, K. (2016). Climate change and wine: A review of the economic implications. Journal of Wine Economics, 11(1), 105138.CrossRefGoogle Scholar
Berli, F., D'Angelo, J., Cavagnaro, B., Bottini, R., Weilloud, R., and Silva, M. (2008). Phenolic composition in grape (Vitis vinifera L. Cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. Journal of Agricultural and Food Chemistry, 56(9), 28922898.CrossRefGoogle ScholarPubMed
Carbonneau, A. (1985). The early selection of grapevine rootstocks for resistance to drought conditions. American Journal of Enology and Viticulture, 36(3), 195198.CrossRefGoogle Scholar
Coombe, B. (1987). Influence of temperature on composition and quality of grapes. ISHS Acta Horticulturae, 206, 2535.Google Scholar
Duchêne, E., and Schneider, C. (2005). Grapevine and climatic changes: A glance at the situation in Alsace. Agronomy for Sustainable Development, 25(1), 9399.CrossRefGoogle Scholar
Duteau, J., Guilloux, M., and Seguin, G. (1981). Influence des facteurs naturels sur la maturation du raisin, en 1979, à Pomerol et Saint-Emilion. Connaissances de la Vigne et du Vin, 15(3), 127.Google Scholar
Falcão, L., de Revel, G., Perello, M., Moutsiou, A., Sanus, M., and Bordignon-Luiz, M. (2007). A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-norisoprenoids and the sensory profile of Brazilian Cabernet Sauvignon wines. Journal of Agricultural and Food Chemistry, 55(9), 36053612.CrossRefGoogle ScholarPubMed
Ferrise, R., Trombi, G., Moriondo, M., and Bindi, M. (2016). Climate change and grapevines: A simulation study for the Mediterranean basin. Journal of Wine Economics, 11(1), 88104.CrossRefGoogle Scholar
Fraga, H., Malheiro, A., Moutinho-Perreira, J., and Santos, J.A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94110.CrossRefGoogle Scholar
Gambetta, G. (2016). Water stress and grape physiology in the context of global climate change. Journal of Wine Economics, 11(1), 168180.CrossRefGoogle Scholar
Gladstones, J. (2011). Wine, Terroir and Climate Change. Kent Town, South Australia: Wakefield Press.Google Scholar
Guilpart, N., Metay, A., and Gary, C. (2014). Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. European Journal of Agronomy, 54, 920.CrossRefGoogle Scholar
Hannah, L., Roehrdanz, P., Ikegami, M., Shepard, A., Shaw, R., Tabor, G., Zhi, L., Marquet, P., and Hijmans, R. (2013). Climate change, wine, and conservation. Proceedings of the National Academy of Sciences of the United States of America PNAS, 110(17), 69076912.CrossRefGoogle ScholarPubMed
Hsiao, T. (1973). Plant responses to water stress. Annual Review of Plant Physiology, 24, 519570.CrossRefGoogle Scholar
IPCC (International Panel on Climate Change). (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. http://ipcc-wg2.gov/AR5/report/final-drafts/, accessed July 30, 2014.Google Scholar
Jones, G., and Alves, F. (2012). Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. International Journal of Global Warming, 4(3–4), 383406.CrossRefGoogle Scholar
Kliewer, M., and Torres, R. (1972). Effect of controlled day and night temperatures on grape coloration. American Journal of Enology and Viticulture, 23(2), 7177.CrossRefGoogle Scholar
Koch, A., Ebeler, S., Williams, L., and Matthews, M. (2012). Fruit ripening in Vitis vinifera: Light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet-Sauvignon berries. Physiologia Plantarum, 145(2), 275285.CrossRefGoogle Scholar
Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y. and van Leeuwen, C. (2006). Influence of vineyard location and vine water status on fruit maturation of non-irrigated cv Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. Journal of Agricultural and Food Chemistry, 54, 50775086.CrossRefGoogle Scholar
Kriedeman, P., and Smart, R. (1971). Effects of irradiance, temperature and leaf water potential on photosynthesis of vine leaves. Photosynthetica, 5, 615.Google Scholar
Lebon, E., Dumas, V., Pieri, P., and Schultz, H. (2003). Modelling the seasonal dynamics of the soil water balance of vineyards. Functional Plant Biology, 30(6), 699710.CrossRefGoogle ScholarPubMed
Lebon, E., Pellegrino, A., Louarn, G., and Lecoeur, J. (2006). Branch development controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying soil. Annals of Botany, 98(1), 175185.CrossRefGoogle ScholarPubMed
Lonvaud-Funel, A., Renouf, V., and Strehaiano, P. (2010). Microbiologie du vin: bases fondamentales et applications. Paris: Edition Lavoisier Tech et Doc.Google Scholar
Marais, J., van Wyk, C., and Rapp, A. (1992). Effect of storage time, temperature and region on the levels of 1,1,6-Trimethyl-1, 2-dihydronaphthalene and other volatiles, and on quality of Weisser Riesling wines, South African Journal of Enology and Viticulture 13, 3344.Google Scholar
Marguerit, E., Brendel, O., Lebon, E., Decroocq, S., van Leeuwen, C., and Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist, 194(2), 416429.CrossRefGoogle ScholarPubMed
Martinez-Lüscher, J., Sanchez-Dias, M., Delrot, S., Aguirreolea, J., Pascual, I., and Gomès, E. (2014). Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant & Cell Physiology, 55(11), 19251936.CrossRefGoogle ScholarPubMed
Matthews, M., and Anderson, M. (1988). Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. American Journal of Enology and Viticulture. 39(4), 313320.CrossRefGoogle Scholar
Mira de Orduna, R. (2010). Climate change associated effects on wine quality and production. Food Research International, 43, 18441855.CrossRefGoogle Scholar
Oczkowski, E. (2016). The effect of weather on wine quality and prices: An Australian spatial analysis. Journal of Wine Economics, 11(1), 4865.CrossRefGoogle Scholar
Ollat, N., Brisson, N., Denoyes, B., Garcia de Cortazar, I., Goutouly, J.-P., Kleinhentz, M., Launay, M., Michalet, R., Ollat, N., Pieri, P., and van Leeuwen, C. (2013). Les activités agricoles. In Le Treut, H. (ed.), Les impacts du changement climatique en Aquitaine. Bordeaux: Presses Universitaires de Bordeaux, 104149.Google Scholar
Ollat, N., Diakou-Verdin, P., Carde, J.-P., Barrieu, F., Gaudillère, J.-P., and Moing, A. (2002). Grape berry development: A review. Journal International des Sciences de la Vigne et du Vin, 36, 109131.Google Scholar
ONERC (Observatoire National sur les Effets du Réchauffement Climatique). (2014). http://www.developpement-durable.gouv.fr/Dates-de-debut-de-vendanges-en.html. Accessed August 6, 2014.Google Scholar
Parker, A., Garcia de Cortazar Atauri, I., van Leeuwen, C., and Chuine, I. (2011). General phenological model to characterise the timing of flowering and véraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2), 206216.CrossRefGoogle Scholar
Parker, A., Hofmann, R, van Leeuwen, C., McLachlan, A., and Trought, M. (2014). Leaf area to fruit mass ratio determines the time of véraison in Sauvignon blanc and Pinot noir grapevines. Australian Journal of Grape and Wine Research, 20(3), 422431.CrossRefGoogle Scholar
Peyrot des Gachons, C., van Leeuwen, C., Tominaga, T., Soyer, J.-P., Gaudillere, J.-P., and Dubourdieu, D. (2005). Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv Sauvignon blanc in field conditions. Science of Food and Agriculture, 85(1), 7385.CrossRefGoogle Scholar
Pieri, P. (2010). Changement climatique et culture de la vigne: l'essentiel des impacts. In Brisson, N. and Levrault, F. (eds.), Changement climatique, agriculture et forêt en France: simulations d'impacts sur les principales espèces. Livre Vert CLIMATOR, ADEME, 213224.Google Scholar
Pons, A., Lavigne, V., Darriet, P., and Dubourdieu, D. (2011). Identification et impact organoleptique de la massoia lactone dans les moûts et les vins rouges. Oenologie 2011, Proceedings of the 9th Symposium International d’Œnologie, Bordeaux, June 15–17, 851854.Google Scholar
Pons, A., Lavigne, V., Darriet, P., and Dubourdieu, D. (2014). Glutathione preservation during winemaking with Vitis vinifera white varieties: Example of Sauvignon blanc grapes. American Journal of Enology and Viticulture, 66(2), 187194.CrossRefGoogle Scholar
Roehrdanz, P.R., and Hannah, L. (2016). Climate change, California wine and wildlife habitat. Journal of Wine Economics, 11(1), 6987.CrossRefGoogle Scholar
Scarlett, N., Bramley, R., and Siebert, T. (2014). Within-vineyard variation in the “pepper” compound rotundone is spatially structured and related to variation in the land underlying the vineyard. Australian Journal of Grape and Wine Research, 20(2), 214222.CrossRefGoogle Scholar
Schar, C., Vidale, P.-L., Lüthi, D., Frei, C., Häberli, C., Liniger, M., and Appenzeller, C. (2004). The role of increasing temperature variability for European summer heat waves. Nature, 427, 332336.CrossRefGoogle Scholar
Schultz, H. (2000). Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6(1), 212.CrossRefGoogle Scholar
Schultz, H. (2016). Global climate change, sustainability, and some challenges for grape and wine production. Journal of Wine Economics, 11(1), 181200.CrossRefGoogle Scholar
Schüttler, A., Gruber, B., Thibon, C., Lafontaine, M., Stoll, M., Schultz, H., Rauhut, D., and Darriet, P. (2011). Influence of environmental stress on secondary metabolite composition of Vitis vinifera var. Riesling grapes in cool climate region—water status and sun exposure. Oenologie 2011, Proceedings of the 9th Symposium International d’Œnologie, Bordeaux, June 15–17, 6570.Google Scholar
Schüttler, A., Fritsch, S, Hoppe, J.E., Schüssler, C., Jung, R., Thibon, C., Gruber, B.R., Lafontaine, M., Stoll, M., de Revel, G., Schultz, H.R., Rauhut, D. and Darriet, Ph. (2013). Facteurs influençant la typicité aromatique des vins du cépage de Vitis vinifera cv. Riesling- Aspects sensoriels, chimiques et viticoles. Revue des Œnologues, 149S, 3641.Google Scholar
Spayd, S., Tarara, J., Mee, D., and Ferguson, J. (2002). Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53(3), 171182.CrossRefGoogle Scholar
Tregoat, O., van Leeuwen, C., Choné, X., and Gaudillere, J.-P. (2002). Etude du régime hydrique et de la nutrition azotée de la vigne par des indicateurs physiologiques: influence sur le comportement de la vigne et la maturation du raisin (Vitis vinifera L. cv Merlot, 2000, Bordeaux). Journal International des Sciences de la Vigne et du Vin, 36(3), 133142.Google Scholar
van Leeuwen, C., and Seguin, G. (1994). Incidences de l'alimentation en eau de la vigne, appréciée par l'état hydrique du feuillage, sur le développement de l'appareil végétatif et la maturation du raisin (Vitis vinifera variété Cabernet franc, Saint-Emilion, 1990). Journal International des Sciences de la Vigne et du Vin, 28(2), 81110.Google Scholar
van Leeuwen, C., and Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17(1), 110.CrossRefGoogle Scholar
van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., and Dubourdieu, D. (2004). Influence of climate, soil and cultivar on terroir. American Journal of Enology and Viticulture, 55(3), 207217.CrossRefGoogle Scholar
van Leeuwen, C., Trégoat, O., Choné, X., Bois, B., Pernet, D. and Gaudillère, J.-P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin, 43(3) 121134.Google Scholar
van Leeuwen, C., Schultz, H., Garcia de Cortazar-Atauri, I., Duchêne, E., Ollat, N., Pieri, P., Bois, B., Goutouly, J.-P., Quénol, H., Touzard, J.-M., Malheiro, A., Bavaresco, L., and Delrot, S. (2013). Why climate change will not dramatically decrease viticultural suitability in main wine producing areas by 2050. Proceedings of the National Academy of Sciences of the United States of America PNAS, 110(33), E3051E3052.CrossRefGoogle Scholar