Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T02:09:56.721Z Has data issue: false hasContentIssue false

The Sepik River (Papua New Guinea) is not a dispersal barrier for lowland rain-forest frogs

Published online by Cambridge University Press:  11 September 2013

Chris Dahl*
Affiliation:
University of South Bohemia and Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31 370 05 Ceske Budejovice, Czech Republic
Stephen J. Richards
Affiliation:
Herpetology Department, South Australian Museum, North Terrace, Adelaide and Center for Applied Biodiversity Science, Conservation International, Atherton, Australia
Vojtech Novotny
Affiliation:
University of South Bohemia and Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31 370 05 Ceske Budejovice, Czech Republic
*
1Corresponding author. Email: cd.rokrok@gmail.com

Abstract:

Major tropical rivers have been suggested to be important dispersal barriers that increase the beta diversity of animal communities in lowland rain forests. We tested this hypothesis using assemblages of frogs in the floodplains of the Sepik River, a major river system in Papua New Guinea. We surveyed frogs at five sites within a continuous 150 × 500-km area of lowland rain forest bisected by the Sepik, using standardized visual and auditory survey techniques. We documented 769 frogs from 44 species. The similarity in species composition decreased with logarithm of geographical distance between the sites, which ranged from 82 to 465 km. The similarity decay did not depend on whether or not the compared sites were separated by the Sepik River or whether the species were aquatic or terrestrial breeders. Likewise, a DCA ordination of frog assemblages did not show separation of sites by the river as a significant factor explaining their composition. Our results suggest that even major rivers, such as the Sepik, may not act as dispersal barriers. Rivers may not limit the distribution of frogs and therefore have a limited effect on determining frog species abundance and assemblage structure in rain forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABBOTT, L. D. 1995. Neogene tectonic reconstruction of the Adelbert-Finisterre-New Britain collision, northern Papua New Guinea. Journal of Asian Earth Sciences 11:3351.CrossRefGoogle Scholar
ALEIXO, A. 2004. Historical diversification of a Terra-firme forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of Amazonian diversification. Evolution 58:13031317.Google ScholarPubMed
ALLISON, A. 1996. Zoogeography of amphibians and reptiles of New Guinea and the Pacific region. Pp. 407436 in Keast, A. & Miller, S. E. (eds.). The origin and evolution of Pacific Island biotas, New Guinea to eastern Polynesia: patterns and processes. SPB Academic Publishing, Amsterdam.Google Scholar
ANSTIS, M., PARKER, F., HAWKES, T., MORRIS, I. & RICHARDS, S. J. 2011. Direct development in some Australopapuan microhylid frogs of the genera Austrochaperina, Cophixalus and Oreophryne (Anura: Microhylidae) from northern Australia and Papua New Guinea. Zootaxa 3052:150.CrossRefGoogle Scholar
AUSTIN, C. C., HAYDEN, C. J., BIGILALE, I., DAHL, C. & ANAMINIATO, J. 2008. Checklist and comments on the terresterial amphibian and reptile fauna from Utai northwestern Papua New Guinea. Herpetological Review 39:4046.Google Scholar
BRIGGS, J. C. 1974. Operation of zoogeographic barriers. Systematic Zoology 23:248256.CrossRefGoogle Scholar
DAHL, C., NOVOTNY, V., MORAVEC, J. & RICHARDS, S. J. 2009. Beta diversity of frogs in the forests of New Guinea, Amazonia and Europe: contrasting tropical and temperate communities. Journal of Biogeography 36:896904.CrossRefGoogle Scholar
DAVIES, H. L., PEREMBO, R. C. B., WINN, R. D. & KENGEMAR, P. 1997. Terranes of the New Guinea orogen. Pp. 6166 in Hancock, G. (ed.). Proceedings of the Geology Exploration and Mining Conference, Madang. Australasian Institute of Mining and Metallurgy, Melbourne.Google Scholar
FOUQUET, A., LEDOUX, J. B., DUBUT, V., NOONAN, B. P. & SCOTTI, I. 2012. The interplay of dispersal limitation, rivers, and historical events shapes the genetic structure of an Amazonian frog. Biological Journal of the Linnean Society 106:356373.CrossRefGoogle Scholar
FUNK, W. C., CALDWELL, J. P., PEDEN, C. E., PADIAL, J. M., DE LA RIVA, I. & CANNATELLA, D. C. 2007. Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, Physalaemus petersi. Molecular Phylogenetics and Evolution 44:825837.CrossRefGoogle ScholarPubMed
GASCON, C., LOUGHEED, S. C. & BOGART, J. P. 1998. Patterns of genetic population differentiation in four species of Amazonian frogs: a test of the riverine barrier hypothesis. Biotropica 30:104119.CrossRefGoogle Scholar
GASCON, C., MALCOLM, J. R., PATTON, J. L., DA SILVA, M. N. F., BOGART, J. P., LOUGHEED, S. C., PERES, C. A., NECKE, L. S. & BOAG, P. T. 2000. Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences USA 97:1367213677.CrossRefGoogle ScholarPubMed
GEHRING, P. S., PABIJAN, M., RANDRIANIRINA, J. E., GLAW, F. & VENCES, M. 2012. The influence of riverine barriers on phylogeographic patterns of Malagasy reed frogs (Heterixalus). Molecular Phylogenetics and Evolution 64:618632.CrossRefGoogle ScholarPubMed
HAFFER, J. 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation 6:451476.CrossRefGoogle Scholar
HALL, J. P. W. & HARVEY, D. J. 2002. The phylogeography of Amazonia revisited: new evidence from roidinid butterflies. Evolution 56:14891497.Google ScholarPubMed
HANSKI, I. 1999. Metapopulation ecology. Oxford University Press, Oxford. 328 pp.CrossRefGoogle Scholar
HARCOURT, A. H. & WOOD, M. A. 2012. Rivers as barriers to primate distributions in Africa. International Journal of Primatology 33:168183.CrossRefGoogle Scholar
HAYES, F. E. & SEWLAL, J. N. 2004. The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography 31:18091818.CrossRefGoogle Scholar
JOHNS, R. J. 1986. The instability of the tropical ecosystem in New Guinea. Blumea 31:341361.Google Scholar
KNOPP, T., RAHAGALALA, P., MIINALA, M. & HANSKI, I. 2011. Current geographical ranges of Malagasy dung beetles are not delimited by large rivers. Journal of Biogeography 38:10981108.CrossRefGoogle Scholar
LEPS, J. & SMILAUER, P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge. 267 pp.CrossRefGoogle Scholar
LI, R., CHEN, W., TU, L. & FU, J. 2009. Rivers as barriers for high elevation amphibians: a phylogeographic analysis of the alpine stream frog of the Hengduan Mountains. Journal of Zoology 277:309316.CrossRefGoogle Scholar
LOUGHEED, S. C., GASCON, C., JONES, D. A., BOGART, J. P. & BOAG, P. T. 1999. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London 266:18291835.CrossRefGoogle Scholar
MCALPINE, J. R., KEIG, G. & FALLS, R. 1983. Climate of Papua New Guinea. The Australian National University, Australia. 200 pp.Google Scholar
MITCHELL, D. S., PETR, T. & VINER, A. B. 1980. The water-fern Salvinia molesta in the Sepik River, Papua New Guinea. Environmental Conservation 7:115122.CrossRefGoogle Scholar
NIX, H. A. & KALMA, J. D. 1972. Climate as a dominant control in the biogeography of northern Australia and New Guinea. Pp. 6192 in Walker, D. (ed.). Bridge and barrier: the natural and cultural history of Torres Straight. Australian National University, Canberra.Google Scholar
NOONAN, B. P. & WRAY, K. P. 2006. Neotropical diversification: the effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography 33:10071020.CrossRefGoogle Scholar
NOVOTNY, V., MILLER, S. E., BASSET, Y., JANDA, M., SETLIFF, G. P., HULCR, J., STEWART, A. J. A., AUGA, J., MOLEM, K., MANUMBOR, M., TAMTIAI, E., MOGIA, M. & WEIBLEN, G. D. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature 448:692696.CrossRefGoogle ScholarPubMed
PATTON, J. L., DASILVA, M. N. F. & MALCOLM, J. R. 1994. Gene genealogy and differentiation among arboreal spiny rats (Rodentia, Echimydae) of the Amazon Basin – a test of the riverine barrier hypothesis. Evolution 48:13141323.CrossRefGoogle Scholar
PERES, C. A., PATTON, J. L. & DASILVA, M. N. F. 1996. Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica 67:113124.CrossRefGoogle ScholarPubMed
PIGRAM, C. J. & DAVIES, H. L. 1987. Terranes and the accretion history of the New Guinea orogen. Journal of Australian Geology and Geophysics 10:193211.Google Scholar
REINER, E. J. & ROBBINS, R. G. 1964. The middle Sepik Plains, New Guinea: a physiographic study. Geographical Review 54:2044.CrossRefGoogle Scholar
RICHARDS, S. J. 2002. Rokrok: an illustrated guide to the frogs of the Kikori River Basin. WWF, Port Moresby. 35 pp.Google Scholar
SWADLING, P. 1997. Changing shorelines and cultural orientations in the Sepik-Ramu, Papua New Guinea: implications for Pacific prehistory. World Archaeology 29:114.CrossRefGoogle Scholar
SYMULA, R., SCHULTE, R. & SUMMERS, K. 2003. Molecular systematics and phylogeography of Amazonian poison frogs of the genus Dendrobates. Molecular Phylogenetics and Evolution 26:452475.CrossRefGoogle ScholarPubMed
TANTRAWATPAN, C., SAIJUNTHA, W., PILAB, W., SAKDAKHAM, K., PASORN, P., THANONKEO, S., THIHA, SATRAWAHA, R. & PETNEY, T. 2011. Genetic differentiation among populations of Brachytrupes portentosus (Lichtenstein 1796) (Orthoptera: Gryllidae) in Thailand and the Lao PDR: the Mekong River as a biogeographic barrier. Bulletin of Entomological Research 101:687696.CrossRefGoogle ScholarPubMed
WALLACE, A. R. 1852. On the monkeys of the Amazon. Proceedings of the Zoological Society of London'18; 20:107110.Google Scholar
ZHAO, S., DAI, Q. & FU, J. 2009. Do rivers function as genetic barriers for the plateau wood frog at high elevations? Journal of Zoology 279:270276.CrossRefGoogle Scholar
ZWEIFEL, R. G. & TYLER, M. J. 1982. Amphibia of New Guinea. Monographiae Biologicae 41:759798.CrossRefGoogle Scholar