Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:53:17.696Z Has data issue: false hasContentIssue false

The role of edaphic factors on plant species richness and diversity along altitudinal gradients in the Brazilian semi-arid region

Published online by Cambridge University Press:  25 September 2020

Maiara B. Ramos
Affiliation:
Laboratório de Ecologia & Conservação de Florestas Secas, Departamento de Biologia, Universidade Estadual da Paraíba, Bairro Universitário, 58429-500, Campina Grande, Paraíba, Brasil
Fabricio C. Diniz
Affiliation:
Laboratório de Ecologia & Conservação de Florestas Secas, Departamento de Biologia, Universidade Estadual da Paraíba, Bairro Universitário, 58429-500, Campina Grande, Paraíba, Brasil
Humberto A. de Almeida
Affiliation:
Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
Gilbevan R. de Almeida
Affiliation:
Laboratório de Ecologia & Conservação de Florestas Secas, Departamento de Biologia, Universidade Estadual da Paraíba, Bairro Universitário, 58429-500, Campina Grande, Paraíba, Brasil
Anderson S. Pinto
Affiliation:
Laboratório de Ecologia & Conservação de Florestas Secas, Departamento de Biologia, Universidade Estadual da Paraíba, Bairro Universitário, 58429-500, Campina Grande, Paraíba, Brasil
Jorge A. Meave
Affiliation:
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
Sérgio de F. Lopes*
Affiliation:
Laboratório de Ecologia & Conservação de Florestas Secas, Departamento de Biologia, Universidade Estadual da Paraíba, Bairro Universitário, 58429-500, Campina Grande, Paraíba, Brasil
*
Author for correspondence: *Sérgio de F. Lopes, Email: defarialopes@gmail.com

Abstract

Unlike well-known global patterns of plant species richness along altitudinal gradients, in the mountainous areas of the Brazilian Caatinga, species richness and diversity reach their maxima near mountain tops. The causes of this unusual pattern are not well understood, and in particular the role of edaphic factors on plant community assembly along these gradients has not been investigated. Our goal was to assess the role of edaphic factors (fertility and soil texture) on plant community composition and structure on two mountains of the Brazilian semi-arid region. In 71 plots (Bodocongó site, twenty-one 200-m2 plots, 401–680 m asl; Arara site, fifty 100-m2 plots, 487–660 m asl) we recorded 3114 individuals representing 61 plant species; in addition, at each plot we collected composite soil samples from 0–20 cm depth. Significant altitude-related changes were observed both for community structure and composition, and edaphic variables. A canonical correspondence analysis allowed the distinction of two groups of plots according to species abundances, indicating a preferential habitat distribution of species depending both on altitude and soil variables. Although soil fertility was lowest at the highest altitudes, these areas had high richness and diversity. Conversely, the more fertile foothills were characterized by the dominance of generalist pioneer species. Despite the relatively short altitudinal range that characterizes the studied mountains, this study elucidates the role of edaphic factors on the floristic composition and species richness patterns on the mountains of the Brazilian semi-arid region.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

Ab’ Sáber, AN (1974) O domínio morfoclimático semiarido das Caatingas brasileiras. Geomorfologia 43, 139.Google Scholar
Almeida, HA, Ramos, MB, Diniz, FC and Lopes, SF (2020) What is the role of altitudinal variation in the stock and composition of litter? Floresta e Ambiente 27, 28.CrossRefGoogle Scholar
Álvares, CA, Stape, JL, Sentelhas, PC, de Moraes Gonçalves, JL and Sparovek, G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Amorim, IL, Sampaio, EVSB and Araújo, EL (2005) Flora e estrutura da vegetação arbustivo-arbórea de uma área de caatinga do Seridó, RN, Brasil. Acta Botanica Brasilica 19, 615623.CrossRefGoogle Scholar
Andersen, KM, Corre, MD, Turner, BL and Dalling, JW (2010) Plant-soil associations in a lower montane tropical forest: physiological acclimation and herbivore-mediated responses to nitrogen addition. Functional Ecology 24, 11711180.CrossRefGoogle Scholar
Anderson, MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58, 626639.CrossRefGoogle Scholar
APG IV (Angiosperm Phylogeny Group IV) (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 120.CrossRefGoogle Scholar
Araújo, KD, Parente, HN, Éder-Silva, E, Ramalho, CI, Dantas, RT, de Andrade, AP and da Silva, DS (2012) Estrutura fitossociológica do estrato arbustivo-arbóreo em áreas contíguas de Caatinga no Cariri Paraibano. Brazilian Geographical Journal: Geosciences and Humanities Research Medium 3, 155169.Google Scholar
Barros, MF, Pinho, BX, Leão, T and Tabarelli, M (2017) Soil attributes structure plant assemblages across an Atlantic forest mosaic. Journal of Plant Ecology 11, 613622.CrossRefGoogle Scholar
Bertoncello, R, Yamamoto, K, Meireles, LD and Shepherd, GJ (2011) A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in south and southeast Brazil. Biodiversity and Conservation 20, 34133433.CrossRefGoogle Scholar
Borcard, D, Gillet, F and Legendre, P (2011) Spatial analysis of ecological data. In Numerical Ecology with R. New York, NY: Springer, pp. 227292.CrossRefGoogle Scholar
Bohlman, SA, Laurance, WF, Laurance, SG, Nascimento, HEM, Fearnside, PM and Andrade, A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. Journal of Vegetation Science 19, 863874.CrossRefGoogle Scholar
Born, J, Pluess, AR, Burslem, DFRP, Nilus, R, Maycock, CR and Ghazoul, J (2014) Differing life history characteristics support coexistence of tree soil generalist and specialist species in tropical rain forests. Biotropica 46, 5868.CrossRefGoogle Scholar
Boulangeat, I, Lavergne, SVJ, Garraud, L and Thuiller, W (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. Journal of Biogeography 39, 204214.CrossRefGoogle Scholar
Büchi, L and Vuilleumier, S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. American Naturalist 183, 612624.CrossRefGoogle ScholarPubMed
Bueno, ML, Neves, DRM, Souza, AF, Oliveira Junior, E, Damasceno Junior, GA, Pontara, V, Laura, VA and Ratter, JA (2013) Influence of edaphic factors on the floristic composition of an area of cerradão in the Brazilian central-west. Acta Botanica Brasilica 27, 445455.CrossRefGoogle Scholar
Calixto Júnior, JT and Drumond, MA (2011) Estrutura fitossociológica de um fragmento de Caatinga sensu stricto 30 anos após corte raso, Petrolina-PE, Brasil. Revista Caatinga 24, 6774.Google Scholar
Chao, A and Jost, L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 25332547.CrossRefGoogle ScholarPubMed
Decker, KLM and Boerner, REJ (2003) Elevation and vegetation influences on soil properties in Chilean Nothofagus forests. Revista Chilena de Historia Natural 76, 371381.CrossRefGoogle Scholar
Devictor, V, Julliard, R and Jiguet, F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507514.CrossRefGoogle Scholar
Eisenlohr, PV, Alves, LF, Bernacci, LC, Padgurschi, MCG, Torres, RB, Prata, EMB, dos Santos, FAM, Assis, MA, Ramos, E, Rochelle, ALC, Martins, FR, Campos, MC, Pedroni, F, Capel-Sanchez, MC, Pereira, LS, Vieira, SA, Gomes, JAMA, Tamashiro, JY, Scaranello, MAS, Caron, CJ and Joly, CA (2013) Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. Biodiversity and Conservation 22, 27672783.CrossRefGoogle Scholar
EMBRAPA-SOLOS (Empresa Brasileira de Pesquisa Agropecuária-Solos) (1997) Análises de solos. Manual de métodos de análises de solo. 2nd edn. Ministério da Agricultura e do Abastecimento. Rio de Janeiro. 212 pp.Google Scholar
Finger, Z and Oestreich Filho, E (2014) Efeitos do solo e da altitude sobre a distribuição de espécies arbóreas em remanescentes de cerrado sensu stricto . Advances in Forestry Science 1, 2733.Google Scholar
Foster, BL, Questad, EJ, Collins, CD, Murphy, CA, Dickson, TL and Smith, VH (2011) Seed availability constrains plant species sorting along a soil fertility gradient. Journal of Ecology 99, 473481.Google Scholar
Gallardo-Cruz, JA, Pérez-García, EA and Meave, JA (2009) β-diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecology 24, 473482.CrossRefGoogle Scholar
Galantini, JA and Suñer, L (2008) Las fracciones orgánicas del suelo: análisis en los suelos de la Argentina. Agriscientia 25, 4155.Google Scholar
Galantini, JA, Senesi, N, Brunetti, G and Rosell, R (2004) Influence of texture on organic matter distribution and quality and nitrogen and sulphur status in semiarid Pampean grassland soils of Argentina. Geoderma 123, 143152.CrossRefGoogle Scholar
Guedes, RS, Zanella, FCV, Costa Júnior, JEV, Santana, GM and Silva, JA (2012) Caracterização florístico-fitossociológica do componente lenhoso de um trecho de Caatinga no semiárido paraibano Revista Caatinga 25, 99108.Google Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) PAST: Paleontological Statistics Software: Package for Education and Data Analysis. Palaeontologia Electronica 4, art. 4.Google Scholar
Huston, M (1979) A general hypothesis of species diversity. American Naturalist 113, 81101.CrossRefGoogle Scholar
Huston, MA (2014) Disturbance, productivity, and species diversity: empiricism vs logic in ecological theory. Ecology 95, 23822396.CrossRefGoogle Scholar
IUSS Working Group WRB (Word Reference Base for Soil Resources) (2014) International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. Rome: IUSS/ISRIC/FAO. 106 pp.Google Scholar
Jost, L (2006) Entropy and diversity. Oikos 113, 363375.CrossRefGoogle Scholar
Jost, L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88, 24272439.CrossRefGoogle ScholarPubMed
Kichenin, E, Wardle, DA, Peltzer, DA, Morse, CW and Freschet, GT (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27, 12541261.CrossRefGoogle Scholar
Körner, C (2004) Mountain biodiversity, its causes and function. Ambio 13, 1117.CrossRefGoogle Scholar
Laliberté, E, Zemunik, G and Turner, BL (2014) Environmental filtering explains variation in plant diversity along resource gradients. Science 345, 16021605.CrossRefGoogle ScholarPubMed
Laurance, SG, Laurance, WF, Andrade, A, Fearnside, PM, Harms, KE, Vicentini, A and Luizão, RC (2010) Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science 21, 96106.CrossRefGoogle Scholar
Lomolino, MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography 10, 313.CrossRefGoogle Scholar
Lopes, SF (2017) Competition analysis using neighborhood models: implications for plant community assembly rules. Ethnobiology and Conservation 6, 124.CrossRefGoogle Scholar
Lopes, SF, Ramos, MB and Almeida, GR (2017) The role of mountains as refugia for biodiversity in Brazilian Caatinga: conservationist implications. Tropical Conservation Science 10, 112.CrossRefGoogle Scholar
Malhotra, H, Sharma, S and Pandey, R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. In Hasanuzzaman, M, Fujita, M, Oku, H, Nahar, K and Hawrylak-Nowak, B (eds), Plant Nutrients and Abiotic Stress Tolerance. Singapore: Springer, pp. 171190.CrossRefGoogle Scholar
Manish, K, Pandit, MK, Telwala, Y, Nautiyal, DC, Koh, LP and Tiwari, S (2017) Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya. Journal of Plant Research 130, 829844.CrossRefGoogle ScholarPubMed
Maragon, LC, Soares, JJ, Feliciano, ALP, Lani, JL and Matos, LV (2013) Relação entre vegetação e pedoformas na Mata do Paraíso, município de Viçosa, Minas Gerais. Revista Árvore 37, 441450.CrossRefGoogle Scholar
Martins, SV, Silva, NRS, de Souza, AL and Neto, JAAM (2003) Distribuição de espécies arbóreas em um gradiente topográfico de Floresta Estacional Semidecidual em Viçosa, MG. Scientia Forestalis 64, 172181.Google Scholar
McCune, B, Grace, JB and Urban, DL (2002) Analysis of Ecological Communities (Vol. 28). Gleneden Beach, OR: MjM software design.Google Scholar
Melo, AS and Hepp, LU (2008) Ferramentas estatísticas para análise de dados provenientes de biomonitoramento. Oecologia Brasiliensis 12, 463486.Google Scholar
Mendes, MRA, Munhoz, CBR, Silva Junior, MC and Castro, AAJF (2012) Relação entre a vegetação e as propriedades do solo em áreas de campo limpo úmido no Parque Nacional de Sete Cidades, Piauí, Brasil. Rodriguésia 63, 971984.CrossRefGoogle Scholar
Méndez-Toribio, M, Meave, JA, Zermeño-Hernández, I and Ibarra-Manríquez, G (2016) Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. Journal of Vegetation Science 27, 10941103.CrossRefGoogle Scholar
Moro, MF, Silva, IA, Araújo, FS, Lughadha, EN, Meagher, TR and Martins, FR (2015) The role of edaphic environment and climate in structuring phylogenetic pattern in seasonally dry tropical plant communities. PLoS ONE. doi: 10.1371/journal.pone.0119166.Google ScholarPubMed
Moro, MF, Lughadha, EN, Araújo, FS and Martins, FR (2016) A phytogeographical metaanalysis of the semiarid Caatinga domain in Brazil. Botanical Review 82, 91148.CrossRefGoogle Scholar
Neri, AV, Borges, GRA, Meira-Neto, JAA, Magnago, LFS, Trotter, IM, Schaefer, CEG and Porembski, S (2016) Soil and altitude drive diversity and functioning of Brazilian Páramos (campo de altitude). Journal of Plant Ecology 16, 19.Google Scholar
Olsen, SL and Klanderud, K (2014) Biotic interactions limit species richness in an alpine plant community, especially under experimental warming. Oikos 123, 7178.CrossRefGoogle Scholar
Pellegrini, AF (2016) Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313324.CrossRefGoogle ScholarPubMed
Pinho, BX, Melo, FPL, Arroyo-Rodríguez, V, Pierce, S, Lohbeck, M and Tabarelli, M (2018) Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. Journal of Ecology 106, 137147.CrossRefGoogle Scholar
Prado, DE (2003) As caatingas da América do Sul. Ecologia e conservação da Caatinga 2, 374.Google Scholar
Queiroz, LP, Cardoso, D, Fernandes, MF and Moro, MF (2017) Diversity and evolution of flowering plants of the Caatinga Domain. In da Silva, JMC, Leal, IR and Tabarelli, M (eds), Caatinga: The Largest Tropical Dry Forest Region in South America. Cham: Springer, pp. 2363.CrossRefGoogle Scholar
Rahbek, C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 2, 200205.CrossRefGoogle Scholar
Rezende, VL, Miranda, PLS, Meyer, L, Moreira, CV, Linhares, MFM, Oliveira-Filho, AT and Eisenlohr, PV (2015) Tree species composition and richness along altitudinal gradients as a tool for conservation decisions: the case of Atlantic semideciduous forest. Biodiversity and Conservation 24, 21492163.CrossRefGoogle Scholar
Ribeiro, EMS, Arroyo-Rodríguez, V, Santos, BA, Tabarelli, M and Leal, IR (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology 52, 611620.CrossRefGoogle Scholar
Ribeiro, E, Santos, BA, Arroyo-Rodríguez, V, Tabarelli, M, Souza, G and Leal, IR (2016) Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97, 15831592.CrossRefGoogle ScholarPubMed
Ricklefs, RE (2015) Intrinsic dynamics of the regional community. Ecology Letters 18, 497503.CrossRefGoogle ScholarPubMed
Rito, KF, Arroyo-Rodríguez, V, Queiroz, RT, Leal, IR and Tabarelli, M (2017 a) Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. Journal of Ecology 105, 828838.CrossRefGoogle Scholar
Rito, KF, Tabarelli, M and Leal, IR (2017 b) Euphorbiaceae responses to chronic anthropogenic disturbances in Caatinga vegetation: from species proliferation to biotic homogenization. Plant Ecology 218, 749759.CrossRefGoogle Scholar
Rodrigues, LA, Carvalho, DA, Oliveira-Filho, AT and Curi, N (2007) Efeitos de solos e topografia sobre a distribuição de espécies arbóreas em um fragmento de floresta estacional semidecidual, em Luminárias, MG. Revista Árvore 31, 2535.CrossRefGoogle Scholar
Rodrigues, PMS, Schaefer, CEGR, Silva, JO, Ferreira-Júnior, WG, Santos, RM and Neri, AV (2018) The influence of soil on vegetation structure and plant diversity in different tropical savannic and forest habitats. Journal of Plant Ecology 11, 226236.Google Scholar
Rodal, MJN, Sampaio, EVSB and Figueiredo, MA (2013) Manual sobre métodos de estudo florístico e fitossociológico – ecossistema Caatinga. Sociedade de Botânica do Brasil, Brasília.Google Scholar
Salas-Morales, SH and Meave, (2012) Elevational patterns in the vascular flora of a highly diverse region in southern Mexico. Plant Ecology 213, 12091220.CrossRefGoogle Scholar
Salas-Morales, SH, Meave, JA and Trejo, I (2015) The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico. International Journal of Biometeorology 59, 18611874.CrossRefGoogle Scholar
Sampaio, EVSB (2010) Caracterização do bioma Caatinga. In Gariglio, MA, Sampaio, EDS, Cestaro, LA and Kageyama, PY (eds), Uso sustentável e conservação dos recursos florestais da Caatinga. Brasilia: Serviço Florestal Brasileiro, pp. 2742.Google Scholar
Sanchez, M, Pedroni, F, Eisenlohr, PV and Oliveira-Filho, AT (2013) Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, southeastern Brazil, from near sea level to 1000 m of altitude. Flora – Morphology, Distribution, Functional Ecology of Plants 208, 184196.CrossRefGoogle Scholar
Sanchez, PA and Logan, TJ (1992) Myths and science about the chemistry and fertility of soils in the tropics. In Lal, R and Sanchez, PA (eds), Myths and Science of Soils of the Tropics. Madison, WI: SSSA and ASA, pp. 3546.Google Scholar
Schaefer, CEGR, Amaral, EF, Mendonça, BAF, Oliveira, H, Lani, JL, Costa, LM and Fernandes-Filho, EI (2008) Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes. Environmental Monitoring and Assessment 140, 279289.CrossRefGoogle ScholarPubMed
Shepherd, GJ (2010) Fitopac, versão 2.0: Software para calcular dados de fitossociologia e fazer análises multivariadas para estudos de ecologia e biogeografia, manual de usuário. Departamento de Botânica, Universidade Estadual de Campinas, Campinas.Google Scholar
Silva, AC and Souza, AF (2018) Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS ONE. doi.org/10.1371/journal.pone.0196130.Google ScholarPubMed
Silva, FKG, Lopes, SF, Lopez, LCS, Melo, JIM and Trovão, DMBM (2014) Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. Journal of Arid Environments 110, 4752.CrossRefGoogle Scholar
Souza, PB, Lelis, JJ, Schaefer, CEGR, Souza, AL and Meira-Neto, JAA (2012) Distribution of tree species in a geomorphological and pedological gradient of submontane semidecidual seasonal forest in the vicinity of Rio Doce state Park, Minas Gerais. Revista Árvore 36, 707718.CrossRefGoogle Scholar
Sundqvist, MK, Giesler, R and Wardle, DA (2011) Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra. PLoS ONE. doi: 10.1371/journal.pone.0027056.CrossRefGoogle ScholarPubMed
Tabarelli, M, Lopes, AV and Peres, CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657661.CrossRefGoogle Scholar
Ter Braak, CJF (1987) The analysis of vegetation-environment relationship by canonical correspondence analysis. Vegetation 69, 6977.CrossRefGoogle Scholar
Ter Braak, CJF and Prentice, IC (1988) A theory of gradient analysis. Advances in Ecological Research 34, 235282.CrossRefGoogle Scholar
Tilman, D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences USA 101, 1085410861.CrossRefGoogle ScholarPubMed
Urbanetz, C, Lehn, CR, Salis, SM, Bueno, ML and Alves, FM (2012) Composição e distribuição de espécies arbóreas em gradiente altitudinal, Morraria do Urucum, Brasil. Oecologia Australis 16, 859877.CrossRefGoogle Scholar
Van der Putten, WH, Bardgett, RD, Bever, JD, Bezemer, TM, Casper, BB, Fukami, T, Kardol, P, Klironomos, JN, Kulmatiski, A, Schweitzer, JA, Suding, KN, Van De Voorde, TFJ and Wardle, DA (2013) Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology 2, 265276.CrossRefGoogle Scholar
Vázquez, GJA and Givnish, TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology 86, 9991020.Google Scholar
Velloso, AL, Sampaio, EVSB and Pareyn, FGC (2002). Ecorregiões propostas para o bioma caatinga. Recife: Associação Plantas do Nordeste/Instituto de Conservação Ambiental/The Nature Conservancy do Brasil.Google Scholar
Verberk, WCEP, Van Der Velde, G and Esselink, H (2010) Explaining abundance-occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. Journal of Animal Ecology 79, 589601.CrossRefGoogle ScholarPubMed
Viani, RAG, Rodrigues, RR, Dawson, TE, Lambers, H and Oliveira, RS (2014) Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. Perspectives in Plant Ecology, Evolution and Systematics 16, 6474.CrossRefGoogle Scholar
Wilcke, W, Yasin, S, Schmitt, A, Valarezo, C and Zech, W (2008) Soils along the altitudinal transect and in catchments. In Beck, E, Bendix, J, Kottke, I, Makeschin, F and Mosandl, R (eds), Gradients in a Tropical Mountain Ecosystem of Ecuador. Berlin: Springer, pp. 7585.CrossRefGoogle Scholar
Zar, JH (1999) Biostatistical Analysis. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Zhu, Q, Riley, WJ, Tang, J and Koven, CD (2016) Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences 13, 341363.CrossRefGoogle Scholar