Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:16:57.025Z Has data issue: false hasContentIssue false

Pollinators and defence of Stachytarpheta glabra (Verbenaceae) nectar resources by the hummingbird Colibri serrirostris (Trochilidae) on ironstone outcrops in south-east Brazil

Published online by Cambridge University Press:  01 May 2008

Claudia Maria Jacobi*
Affiliation:
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
Yasmine Antonini
Affiliation:
Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
*
1Corresponding author. Email: jacobi@icb.ufmg.br

Abstract:

The production and predictability of nectar resources in a population of Stachytarpheta glabra (Verbenaceae) and their use by insects and hummingbirds on ironstone outcrops in south-east Brazil were investigated. The phenology, density, nectar production, reproductive biology and floral visitors were studied, as well as territory size and daily nectar consumption by its main pollinator, Colibri serrirostris. The plant is abundant in the area, aggregated, and has a long flowering period, with very variable daily flower output. Although it can self-fertilize, it requires a pollen vector. Insect visitors totalled 21 species of bees and lepidopterans, including both pollinators and nectar robbers. Individuals of C. serrirostris defend their territories against other hummingbirds and large insects. Nectar production per hummingbird territory (mean size c. 462 m2) was estimated as 68.6–104 mL d−1 in dense areas at the flowering peak, an amount well above the estimated daily consumption of 13 mL by territory holders. Still, defence of large areas seems necessary to reduce nectar theft and cope with spatial resource unpredictability. Phenological characteristics, high density, and the fact that plants are perennial make S. glabra an attractive resource for nectar-feeders in general, and the main long-lasting nectar source for hummingbirds in the area.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVES, R. J. V. & KOLBEK, J. 1994. Plant species endemism in savanna vegetation on table mountains (Campo Rupestre) in Brazil. Vegetatio 113:125139.CrossRefGoogle Scholar
ANTONINI, Y., SOUZA, H. G., JACOBI, C. M. & MURY, F. B. 2005. Richness and behavior of insect visitors of Stachytarpheta glabra Cham. (Verbenaceae) at a ferruginous field, Ouro Preto, MG, Brazil. Neotropical Entomology 34:555564.CrossRefGoogle Scholar
ATKINS, S. 2005. The genus Stachytarpheta (Verbenaceae) in Brazil. Kew Bulletin 60:161272.Google Scholar
BAKER, H. G. 1975. Sugar concentrations in nectars from hummingbird flowers. Biotropica 7:3741.CrossRefGoogle Scholar
BARBOLA, I. D., LAROCA, S., ALMEIDA, M. C. & NASCIMENTO, E. A. 2006. Floral biology of Stachytarpheta maximiliani Scham. (Verbenaceae) and its floral visitors. Revista Brasileira de Entomologia 50:498504.CrossRefGoogle Scholar
BIERE, A. 1995. Genotypic and plastic variation in plant size – effects on fecundity and allocation patterns in Lychnis flos-cuculi along a gradient of natural soil fertility. Journal of Ecology 83:629642.CrossRefGoogle Scholar
BOYDEN, T. C. 1978. Territorial defense against hummingbirds and insects by tropical hummingbirds. Condor 80:216221.CrossRefGoogle Scholar
CARPENTER, F. L., HIXON, M. A., HUNT, A. & RUSSELL, R. W. 1991. Why hummingbirds have such large crops. Evolutionary Ecology 5:405414.CrossRefGoogle Scholar
COTTON, P. A. 1998. Temporal partitioning of a floral resource by territorial hummingbirds. Ibis 140:647653.CrossRefGoogle Scholar
DAFNI, A. 1992. Pollination ecology. A practical approach. Oxford University Press, New York. 250 pp.Google Scholar
DEARBORN, D. C. 1998. Interspecific territoriality by a rufous-tailed hummingbird (Amazilia tzacatl): effects of intruder size and resource value. Biotropica 30:306313.CrossRefGoogle Scholar
EBERHARD, J. R. & EWALD, P. W. 1994. Food availability, intrusion pressure and territory size: an experimental study of Anna's hummingbirds (Calypte anna). Behavioral Ecology and Sociobiology 34:1118.CrossRefGoogle Scholar
FONSECA, N. G., KUMAGAI, A. F. & MIELKE, O. H. H. 2006. Lepidopterans visiting the flowers of Stachytarpheta cayennensis (Rich.) Vahl (Verbenaceae) in Atlantic forest remnants, Minas Gerais, Brazil. Revista Brasileira de Entomologia 50:399405.CrossRefGoogle Scholar
GAFF, D. F. 1987. Desiccation tolerant plants in South America. Oecologia 74:133136.CrossRefGoogle ScholarPubMed
HEINEMANN, D. 1992. Resource use, energetic profitability, and behavioral decisions in migrant rufous hummingbirds. Oecologia 90:137149.CrossRefGoogle ScholarPubMed
JACOBI, C. M. & CARMO, F. F. 2008. The contribution of ironstone outcrops to plant diversity in the Iron Quadrangle, a threatened Brazilian landscape. Ambio 37 (in press).CrossRefGoogle ScholarPubMed
JACOBI, C. M., CARMO, F. F., VINCENT, R. C. & STEHMANN, J. R. 2007. Plant communities on ironstone outcrops – a diverse and endangered Brazilian ecosystem. Biodiversity and Conservation 16:21852200.CrossRefGoogle Scholar
KEARNS, C. A. & INOUYE, D. W. 1993. Techniques for pollination biologists. Colorado University Press, Niwot. 583 pp.Google Scholar
KLEIN, C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist 90:14731499.CrossRefGoogle Scholar
LLOYD, D. G. & SCHOEN, D. J. 1992. Self- and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Science 153:358369.CrossRefGoogle Scholar
MALOOF, J. E. & INOUYE, D. W. 2000. Are nectar robbers cheaters or mutualists? Ecology 81:26512661.CrossRefGoogle Scholar
McWORTHER, T. J. & LÓPEZ-CALLEJA, M. V. 2000. The integration of diet, physiology, and ecology of nectar-feeding birds. Revista Chilena de Historia Natural 73:451460.Google Scholar
NIMER, E. & BRANDÃO, A. M. P. M. 1989. Balanço hídrico e clima da região dos Cerrados. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. 162 pp.Google Scholar
PERRET, M., CHAUTEMS, A., SPICHIGER, R., PEIXOTO, M. & SAVOLAINEN, V. 2001. Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany 87:267273.CrossRefGoogle ScholarPubMed
PICO, F. X. & RETANA, J. 2003. Seed ecology of a Mediterranean perennial herb with an exceptionally extended flowering and fruiting season. Botanical Journal of the Linnean Society 142:273280.CrossRefGoogle Scholar
POREMBSKI, S. & BARTHLOTT, W. 2000. Inselbergs. Biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin. 524 pp.Google Scholar
PORTO, M. L. & SILVA, M. F. F. 1989. Tipos de vegetação metalófila em áreas da Serra de Carajás e de Minas Gerais. Acta Botanica Brasilica 3:1321.CrossRefGoogle Scholar
POWERS, D. R. & CONLEY, T. M. 1994. Field metabolic-rate and food-consumption of two sympatric hummingbird species in southeastern Arizona. Condor 96:141150.CrossRefGoogle Scholar
PRIMACK, R. B. & HOWE, H. F. 1975. Interference competition between a hummingbird (Amazilia tzacatl) and skipper butterflies (Hesperiidae). Biotropica 7:5558.CrossRefGoogle Scholar
SICK, H. 1997. Ornitologia brasileira. Nova Fronteira, Rio de Janeiro. 912 pp.Google Scholar
SILVA, M. F. F., SECCO, R. S. & LOBO, M. G. A. 1996. Aspectos ecológicos da vegetação rupestre da Serra dos Carajás, estado do Pará, Brasil. Acta Amazonica 26:1744.CrossRefGoogle Scholar
SIMMONS, G. C. 1968. Geology and iron deposits of the Western Serra do Curral, Minas Gerais, Brazil. Geological Survey Professional Papers 341:157.Google Scholar
SOUTHWOOD, T. R. E. & HENDERSON, P. A. 2004. Ecological methods. (Third edition). Blackwell, Oxford. 575 pp.Google Scholar
TEMELES, E. J., GOLDMAN, R. S. & KUDLA, A. U. 2005. Foraging and territory economics of sexually dimorphic Purple-throated Caribs (Eulampis jugularis) on three Heliconia morphs. Auk 122:187204.CrossRefGoogle Scholar
TIEBOUT, H. M. 1991. Daytime energy management by tropical hummingbirds – responses to foraging constraint. Ecology 72:839851.CrossRefGoogle Scholar
TIEBOUT, H. M. 1993. Mechanisms of competition in tropical hummingbirds – metabolic costs for losers and winners. Ecology 74:405418.CrossRefGoogle Scholar
TYLER, C. & BORCHERT, M. 2003. Reproduction and growth of the chaparral geophyte, Zigadenus fremontii (Liliaceae), in relation to fire. Plant Ecology 165:1120.CrossRefGoogle Scholar
VIANA, P. L. & LOMBARDI, J. A. 2007. Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil. Rodriguésia 58:159177.CrossRefGoogle Scholar
VINCENT, R. C., JACOBI, C. M. & ANTONINI, Y. 2002. Diversidade na adversidade: a vida nos campos metalíferos. Ciência Hoje 185:6467.Google Scholar
WOLF, L. L., HAINSWORTH, F. R. & STILES, F. G. 1972. Energetics of foraging: rate and efficiency of nectar extraction by hummingbirds. Science 176:13511352.CrossRefGoogle ScholarPubMed
ZVEREVA, E. L. & KOZLOV, M. V. 2005. Growth and reproduction of dwarf shrubs, Vaccinium myrtillus and V. vitis-idaea, in a severely polluted area. Basic and Applied Ecology 6:261274.CrossRefGoogle Scholar