Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:38:46.121Z Has data issue: false hasContentIssue false

Patterns of growth, recruitment, mortality and biomass across an altitudinal gradient in a neotropical montane forest, Dominican Republic

Published online by Cambridge University Press:  29 August 2012

Ruth E. Sherman*
Affiliation:
Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA
Timothy J. Fahey
Affiliation:
Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA
Patrick H. Martin
Affiliation:
Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
John J. Battles
Affiliation:
Department of Environmental Science, Policy and Management, University of California at Berkeley, 137 Mulford Hall, Berkeley, CA 94720-3114, USA
*
1Corresponding author. Email: res6@cornell.edu

Abstract:

We examined stand dynamics and biomass along an altitudinal gradient in a tropical montane forest (TMF) in the disturbance-prone Cordillera Central, Dominican Republic. We tested the general hypothesis that chronic disturbance by fire, wind, floods and landslides results in a landscape of relatively low above-ground biomass with high rates of mortality, recruitment and growth as compared with other TMFs. We also expected above-ground biomass to decrease with altitude in part due to declines in growth and increased biomass losses from mortality with increasing altitude. We resurveyed 75 0.1-ha plots distributed across the altitudinal gradient (1100–3100 m asl) 8 y after they were established. Our observations provided mixed evidence on these hypotheses. Turnover rates were high (> 2% y−1) and significantly greater on windward slopes. Above-ground biomass (mean = 306 Mg ha−1, 95% CI = 193–456 Mg ha−1) was highly variable but comparable to other TMFs. Altitudinal patterns of declining biomass and above-ground growth matched observations for other TMFs, whereas mortality and recruitment exhibited no altitudinal trends. More quantitative studies in a variety of TMF settings are needed to better understand how natural disturbance, complex environmental gradients and species dynamics interact to regulate carbon storage, sequestration and turnover across altitudinal gradients in TMFs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIBA, S., TAKYU, M. & KITAYAMA, K. 2005. Dynamics, productivity and species richness of tropical rainforests along elevational and edaphic gradients on Mount Kinabalu, Borneo. Ecological Research 20:279286.Google Scholar
BELLINGHAM, P. J. 1991. Landforms influence patterns of hurricane damage: evidence from Jamaican montane forests. Biotropica 23:427433.Google Scholar
BELLINGHAM, P. J. & TANNER, E. V. J. 2000. The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378384.Google Scholar
BELLINGHAM, P. J., TANNER, E. V. J. & HEALEY, J. R. 1995. Damage and responsiveness of Jamaican montane tree species after disturbance by a hurricane. Ecology 76:25622580.Google Scholar
BOOSE, E. R., FOSTER, D. R. & FLUET, M. 1994. Hurricane impacts to tropical and temperate forest landscapes. Ecological Monographs 64:369400.Google Scholar
BOOSE, E. R., SERRANO, M. I. & FOSTER, D. R. 2004. Landscape and regional impacts of hurricanes in Puerto Rico. Ecological Monographs 74:335352.Google Scholar
BONILLA-PADILLA, E. 2009. Uso de ecuaciones alométricas para estimar biomasa y carbono en Pinus montezumae Lamb. Professional thesis, Universidad Autonoma Chapingo, Division de Ciencias Forestales, Chapingo, Mexico.Google Scholar
CHAVE, J., CONDIT, R., AQUILAR, S., HERNANDEZ, A., LAO, S. & PEREZ, R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society London, Series B: Biological Sciences 359:409420.Google Scholar
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FOLSTER, H., FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J. P., NELSON, B. W., OGAWA, H., PUIG, H., RIERA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.Google Scholar
CHAVE, J., MULLER-LANDAU, H. C., BAKER, T. R., EASDALE, T. A., TER STEEGE, H. & WEBB, C. O. 2006. Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecological Applications 16:23562367.Google Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R. & NI, J. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11:356370.Google Scholar
CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 1995. Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65:419439.Google Scholar
CULMSEE, H., LEUSCHNER, C., MOSER, G. & PITOPANG, R. 2010. Forest above-ground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography 27:960974.Google Scholar
FRANJI, J. L. & LUGO, A. E. 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs 55:351369.Google Scholar
GIRARDIN, C. A. J., MALHI, Y., ARAGAO, L. E. O. C., MAMANI, M., HUARACA HUASCO, W., DURAND, L., FEELEY, K. J., RAPP, J., SILVA-ESPEJO, J. E., SILMANS, M., SALINAS, N. & WHITTAKER, R. J. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 166:31763192.Google Scholar
HARMON, M. E., PHILLIPS, D. L., BATTLES, J. J., HALL, R. O. & LAUENROTH, W. K. 2007. Quantifying uncertainty in net primary production measurements. Pp. 238260 in Fahey, T. J. & Knapp, A. K. (ed). Principles and standards for measuring primary production. Oxford University Press, Oxford.Google Scholar
HERWITZ, S. R. & YOUNG, S. S. 1994. Mortality, recruitment and growth rates of montane tropical rain forest canopy trees on Mount Bellenden-Ker, Northeast Queensland, Australia. Biotropica 26:350361.Google Scholar
HOMEIER, J., BRECKLE, S., GÜNTER, S., ROLLENBECK, R. T. & LEUSCHNER, C. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140148.Google Scholar
HOUGHTON, R. A., HALL, F. & GOETZ, S. J. 2009. The importance of biomass in the global carbon cycle. Journal of Geophysical Research 114 doi:10.1029/2009JG000935.Google Scholar
KENNEDY, L. M. & HORN, S. P. 2008. Postfire vegetation recovery in highland pine forests of the Dominican Republic. Biotropica 40:412421.Google Scholar
KITAYAMA, K. & AIBA, S. I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.Google Scholar
KOHYAMA, T. & TAKADA, T. 1998. Recruitment rates in forest plots: Gf estimates using growth rates and size distributions. Journal of Ecology 86:633639.Google Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RODERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.Google Scholar
LEWIS, J. F. 1980. Cenozoic tectonic evolution and sedimentation in Hispaniola. Transactions of the 9th Caribbean Geology Conference 1:6573.Google Scholar
LEWIS, S. L., PHILLIPS, O. L., BAKER, T. R., LLOYD, J., MALHI, Y., ALMEIDA, S., HIGUCHI, N., LAURANCE, W. F., NEILL, D. A., SILVA, J. N. M., TERBORGH, J., TORRES LEZAMA, A., VASQUEZ MARTINEZ, R., BROWN, S., CHAVE, J., KUEBLER, C., NUNEZ VARGAS, P. & VINCETI, B. 2004. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society London, Series B: Biological Sciences 359:421436.Google Scholar
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTHORN, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient. Journal of Ecology 84:137152.Google Scholar
LOOPE, L. L. & GIAMBELLUCA, T. W. 1998. Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawai'i. Climatic Change 39:503517.Google Scholar
LUGO, A. E. & SCATENA, F. N. 1996. Background and catastrophic tree mortality in tropical moist, wet and rain forests. Biotropica 28:585599.Google Scholar
MARTIN, P. H. & FAHEY, T. J. 2006. Fire history along environmental gradients in the subtropical pine forests of the Cordillera Central, Dominican Republic. Journal of Tropical Ecology 22:289302.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2004. Forty years of tropical forest recovery from agriculture: structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica 36:297317.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.Google Scholar
MAY, T. 2000. Five years of post-fire vegetation succession in a Caribbean cloud forest (Cordillera Central, Dominican Republic). Ecotropica 6:117127.Google Scholar
MCCUNE, B., GRACE, J. B. & URBAN, D. L. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach. 300 pp.Google Scholar
MOSER, G., RODERSTEIN, M., SOETHE, N., HERTEL, D. & LEUSCHNER, C. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. Pp. 229242 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer, Berlin.Google Scholar
MOSER, G., LEUSCHNER, C., RODERSTEIN, M., HERTEL, D., GRAEFE, S., SOETHE, N & IOST, S. 2011. Elevation effects on the carbon budget of tropical mountain forests (S. Ecuador): the role of the belowground compartment. Global Change Biology 17:211226.Google Scholar
OLSSON, U. 2005. Confidence intervals for the mean of a log-normal distribution. Journal of Statistics Education 13:19.Google Scholar
PHILLIPS, O. L. & GENTRY, A. H. 1994. Increasing turnover through time in tropical forests. Science 263:954958.Google Scholar
PHILLIPS, O., BAKER, T. R., ARROYO, L., HIGUCHI, N., KILLEEN, T., LAURANCE, W. F., LEWIS, S. L., LLOYD, J., MALHI, Y., MONTEAGUDO, A., NEILL, D., NÚÑEZ VARGAS, P., SILVA, N., TERBORGH, J., VÁSQUEZ MARTÍNEZ, R., ALEXIADES, M., ALMEIDA, S., BROWN, S., CHAVE, J., COMISKEY, J. A., CZIMCZIK, C. I., DI FIORE, A., ERWIN, T., KUEBLER, C., LAURANCE, S. G., NASCIMENTO, H. E. M., PALACIOS, W., PATIÑO, S., PITMAN, N., OLIVIER, J., QUESADA, C. A., SALDIAS, M., TORRES LEZAMA, A. & VINCETI, B. 2004. Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society London, Series B: Biological Sciences 359:381407.Google Scholar
RAICH, J. W., RUSSELL, A. E. & VITOUSEK, P. M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i. Ecology 78:707721.Google Scholar
READING, A. J. 1990. Caribbean tropical storm activity over the past four centuries. International Journal of Climatology 10:365376.Google Scholar
REYES, G., BROWN, S., CHAPMAN, J. & LUGO, A. E. 1992. Wood densities of tropical tree species. General Technical Report SO-88. USDA Forest Service, Southern Forest Experiment Station, New Orleans. 16 pp.Google Scholar
SCATENA, F. N., MOYA, S., ESTRADA, C. & CHINEA, J. D. 1996. The first five years in the reorganization of above-ground biomass and nutrient use following Hurricane Hugo in the Bisley experimental watersheds, Luquillo Experimental Forest, Puerto Rico. Biotropica 28:424440.Google Scholar
SCHWARTZKOPF, T. 2003. Biophysical characterization of cloud forest vegetation in the Venezuelan Andes. Ph.D. thesis, Cornell University, Ithaca, NY, USA.Google Scholar
SHERMAN, R. E., MARTIN, P. H. & FAHEY, T. J. 2005. Vegetation–environment relationships in forest ecosystems of the Cordillera Central, Dominican Republic. Journal of the Torrey Botanical Society 132:293310.Google Scholar
SHERMAN, R. E., MARTIN, P. H., FAHEY, T. J. & DEGLORIA, S. D. 2008. Fire and vegetation dynamics in high-elevation Neotropical montane forests in the Dominican Republic. Ambio 37:535541.Google Scholar
TANNER, E. V. J. 1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68:573588.Google Scholar
TANNER, E. V. J. & BELLINGHAM, P. J. 2006. Less diverse forest is more resistant to hurricane disturbance: evidence from montane rain forests in Jamaica. Journal of Ecology 94:10031010.Google Scholar
WANG, H., HALL, C. A. S., SCATENA, F. N., FETCHER, N. & WU, W. 2003. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico. Forest Ecology and Management 179:6994.Google Scholar
WEAVER, P. L. & MURPHY, P. G. 1990. Forest structure and productivity in Puerto Rico, Luquillo Mountains. Biotropica 22:6982.Google Scholar
WEBSTER, P. J., HOLLAND, G. J., CURRY, J. A. & CHANG, H. R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:18441846.Google Scholar
YANAI, R. D., BATTLES, J. J., RICHARDSON, A. D., BLODGETT, C. A., WOOD, D. M. & RASTETTER, E. B. 2010. Estimating uncertainty in ecosystem budget calculations. Ecosystems 11:239248.Google Scholar
ZIMMERMAN, J. K., EVERHAM, E. M., WAIDE, R. B., LODGE, D. J., TAYLOR, C. M. & BROKAW, N.V. L. 1994. Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico. Journal of Ecology 82:911922.Google Scholar