Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T19:49:09.757Z Has data issue: false hasContentIssue false

Nocturnal activity by the primarily diurnal Central American agouti (Dasyprocta punctata) in relation to environmental conditions, resource abundance and predation risk

Published online by Cambridge University Press:  01 March 2009

Thomas D. Lambert*
Affiliation:
Department of Natural Sciences, University of Virginia College at Wise, Wise, VA 24293, USA
Roland W. Kays
Affiliation:
New York State Museum, 3140 CEC, Albany NY 12230, USA, and Smithsonian Tropical Research Institute, Republica de Panamá
Patrick A. Jansen
Affiliation:
Center of Ecological and Evolutionary Sciences, University of Groningen, P.O. Box 14, 9700 AA Haren, the Netherlands, and Smithsonian Tropical Research Institute, Republica de Panamá
Enzo Aliaga-Rossel
Affiliation:
Institute of Ecology, Bolivia, and University of Hawaii, EECB Program, 3190 Maile Way, Honolulu, HI, 96822, USA
Martin Wikelski
Affiliation:
University of Konstanz, Department of Biology, Konstanz, Germany, and Max Planck Institute for Ornithology, Radolfzell, Germany
*
1Corresponding author. Current address: Department of Biology, Frostburg State University, Frostburg, MD 21532, USA. Email: tdlambert@frostburg.edu

Extract

An animal's fitness is in part based on its ability to manage the inherent risks (foraging costs, predation, exposure to disease) with the benefits (resource gain, access to mates, social interactions) of activity (Abrams 1991, Altizer et al. 2003, Lima & Bednekoff 1999, Rubenstein & Hohmann 1989, Wikelski et al. 2001). Thus, understanding an animal's pattern of activity is key to understanding behavioural and ecological processes. However, while numerous laboratory methodologies are available to continuously quantify activity over long periods of time, logistical difficulties have greatly hindered activity studies of animals in the field (DeCoursey 1990).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABRAMS, P. A. 1991. Life history and the relationship between food availability and foraging effort. Ecology 72:12421252.CrossRefGoogle Scholar
ADLER, G. H. 1998. Impacts of resource abundance on populations of a tropical forest rodent. Ecology 79:242254.CrossRefGoogle Scholar
ALIAGA-ROSSEL, E., MORENO, R. S., KAYS, R. W. & GIACALONE, J. 2006. Ocelot (Leopardus pardalis) predation on agouti (Dasyprocta punctata). Biotropica 38:691694.CrossRefGoogle Scholar
ALIAGA–ROSSEL, E., KAYS, R. W. & FRAGOSO, J. M. V. 2008. Home-range use by the Central American agouti (Dasyprocta punctata) on Barro Colorado Island, Panama. Journal of Tropical Ecology 24:367374.CrossRefGoogle Scholar
ALTIZER, S., NUNN, C. L., THRALL, P. H., GITTLEMAN, J. L., ANTONOVICS, J., CUNNINGHAM, A. A., DOBSON, A. P., EZENWA, V., JONES, K. E. & PEDERSEN, A. B. 2003. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annual Reviews in Ecology, Evolution, and Systematics 34:517547.CrossRefGoogle Scholar
CHATFIELD, C. 2004. The analysis of time series: An introduction. CRC Press, Boca Raton. 333 pp.Google Scholar
COCHRAN, W. W. 1980. Wildlife telemetry. Pp. 497520 in Schemnitz, S. D. (ed.). Wildlife management techniques manual. Wildlife Society, Washington, DC.Google Scholar
COCHRAN, W. W. & LORD, R. D. 1963. A radio-tracking system for wild animals. Journal of Wildlife Management 27:924.Google Scholar
CROFOOT, M. C., GILBY, I. C., WIKELSKI, M. C. & KAYS, R. W. 2008. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proceedings of the National Academy of Sciences, USA 105:577581.CrossRefGoogle ScholarPubMed
DECOURSEY, P. J. 1990. Circadian photoentrainment in nocturnal mammals: ecological overtones. Biology of Behaviour 15:213238.Google Scholar
GILLIAM, J. F. & FRASER, D. F. 1987. Habitat selection under predation hazard: test of a model with foraging minnows. Ecology 68:18561862.CrossRefGoogle Scholar
KUNKEL, K. E., CHAPMAN, R. C., MECH, L. D. & GESE, E. M. 1991. Testing the Wildlink activity-detection system on wolves and white-tailed deer. Canadian Journal of Zoology 69:24662469.CrossRefGoogle Scholar
LEIGH, E. G. 1999. Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, Oxford. 245 pp.CrossRefGoogle Scholar
LIMA, S. L. & BEDNEKOFF, P. A. 1999. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. The American Naturalist 153:649659.Google Scholar
McNAMARA, J. M. 1996. Risk-prone behaviour under rules which have evolved in a changing environment. American Zoologist. 36:484495.CrossRefGoogle Scholar
MILINSKI, M. & HELLER, R. 1978. Influence of a predator on the optimal foraging behaviour of sticklebacks (Gasterosteus aculeatus L.). Nature 275:642644.Google Scholar
MORENO, R. S., KAYS, R. W. & SAMUDIO, R. 2006. Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. Journal of Mammalogy 87:808816.Google Scholar
RICE, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223225.Google Scholar
RUBENSTEIN, D. I. & HOHMANN, M. E. 1989. Parasites and social behavior of island feral horses. Oikos 55:312320.Google Scholar
SMYTHE, N. 1978. The natural history of the Central American agouti (Dasyprocta punctata). Smithsonian Contributions to Zoology 257:148.Google Scholar
THIES, W., KALKO, E. K. V. & SCHNITZLER, H. U. 2006. Influence of environment and resource availability on activity patterns of Carollia castanea (Phyllostomidae) in Panama. Journal of Mammalogy 87:331338.Google Scholar
WIKELSKI, M., CARBONE, C., BEDNEKOFF, P. A., CHOUDHURY, S. & TEBBICH, S. 2001. Why is female choice not unanimous? Insights from costly mate sampling in marine iguanas. Ethology 107:623638.Google Scholar
WINDSOR, D. M. 1990. Climate and moisture variability in a tropical forest: long-term records from Barro Colorado Island, Panamá. Smithsonian Institution Press, Washington, DC. 145 pp.Google Scholar
WOLF, M., VAN DOORN, G. S., LEIMAR, O. & WEISSING, F. J. 2007. Life-history trade-offs favour the evolution of animal personalities. Nature 447:581584.CrossRefGoogle ScholarPubMed
WRIGHT, S. J., CARRASCO, C., CALDERON, O. & PATTON, S. 1999. The El Nino Southern Oscillation, variable fruit production and famine in a Neotropical forest. Ecology 80:16321647.Google Scholar
WRIGHT, S. J., MULLER-LANDAU, H. C., CALDERÓN, O. & HERNANDÉZ, A. 2005. Annual and spatial variation in seed fall and seedling recruitment in a Neotropical forest. Ecology 86:848860.CrossRefGoogle Scholar