Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:16:31.661Z Has data issue: false hasContentIssue false

The life history of a tropical dragonfly: Cora marina (Odonata: Polythoridae) in Guanacaste, Costa Rica

Published online by Cambridge University Press:  10 July 2009

Gordon Pritchard
Affiliation:
Divison of Ecology, Department of Biological Sciences, University of Calgary, 2500 University Drive N. W., Calgary, Alberta, Canada T2N 1N4

Abstract

The life history of Cora marina was followed for one year in two permanent streams at 600 m elevation in Guanacaste National Park; Costa Rica. The water temperature was c. 21°C year-round, but there was a distinct wet-dry seasonality, very little rain falling from January to May. In both streams, C. marina was univoltine. Adults first appeared at the beginning of May and the flight period coincided with the wet season. The availability of water-soaked logs as oviposition sites probably restricts reproduction to the wet season. Eggs hatched from mid-July to December. Recruitment to subsequent larval instars was slow during the wet season but increased at the start of the dry season. Final-instar larvae were collected from March to October. Oviposition in logs above the stream and the ability to live in the low oxygen conditions of the hyporheic zone probably allow eggs and small larvae to survive wet season spates.

El ciclo biológico de una libelula tropical: Cora marina (Odonata: Polythoridae) en Guanacaste, Costa Rica.

Resumen

El ciclo biológico de Cora marina se estudió por un año en dos arroyos permanentes ubicados a 600 msnm en el Parque Nacional Guanacaste, Costa Rica. La temperatura del agua fué aproximademente 21°C todo el año, pero hubieron distintas estaciones secas y humedas con muy poca lluvia desde enero hasta mayo. En ambos arroyos C. marina fué univoltina. Los adultos aparecieron por primera vez al principio de mayo y el período de vuelo coincidió con la epoca lluviosa. La disponibilidad de troncos mojados como sitios de oviposicion probablemente restringe la reproductión a la epoca lluviosa. Los huevos eclosionaron desde mediados de julio y continuo hasta diciembre. Reclutamiento a los siguientes estadíos larvales fué lento durante el invierno pero aumento al principio del verano. Larvas en su último estadío fueron encontradas desde marzo hasta octubre. Oviposición en troncos encima del arroyo y la capacidad de vivir en el sustrato con un nivel de oxígeno bajo, probablemente permite que los huevos y las larvas pequeñas sobrevivan los torrentes del invierno.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Bishop, J. E. 1973. Limnology of a smalt Malayan river, Sungai Gombak. Dr. W. Junk, The Hague, 485 pp.Google Scholar
Corbet, P. S. 1962. A biology of dragonflies. Witherby, London. 247 pp.Google Scholar
Corbet, P. S. 1980. Biology of Odonata. Annual Review of Entomology 25:189217.CrossRefGoogle Scholar
Dudgeon, D. 1989a. Gomphid (Odonata: Anisoptera) life cycles and production in a Hong Kong forest stream. Archiv für Hydrobiologie 114:531536.Google Scholar
Dudgeon, D. 1989b. Life cycle, production, microdistribution and diet of the damselfly Euphaea decorata (Odonata: Euphaeidae) in a Hong Kong forest stream. Journal of Zoology, London 217:5772.Google Scholar
Dudgeon, D. 1992. Patterns and processes in stream ecology. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. 147 pp.Google Scholar
Dudgeon, D. & Wat, C. Y. M. 1986. Life cycle and diet of Zygonyx iris insignis (Insecta: Odonata: Anisoptera) in Hong Kong running waters. Journal of Tropical Ecology 2:7385.Google Scholar
Furtado, J. I. 1969. Ecology of Malaysian odonates: biotope and association of species. Verhandlungen der internationalen vereinigung für theoretische und angewandte Limnologie 17:863887.Google Scholar
Jackson, J. K. & Sweeney, B. W. 1995. Egg and larval development times for 35 species of tropical stream insects from Costa Rica. Journal of the North American Benthological Society 14:115130.Google Scholar
Janzen, D. H. 1985. On ecological fitting. Oikos 45:308310.Google Scholar
Johnson, D. M. 1991. Behavioral ecology of larval dragonflies and damselflies. Trends in Ecology and Evolution 6:813.CrossRefGoogle ScholarPubMed
Kumar, A. 1972. The phenology of dragonflies in the Dehra Dun Valley, India. Odonatologica 1:199207.Google Scholar
Kumar, A. 1976. Biology of Indian dragonflies with special reference to seasonal regulation and larval development. Bulletin of Entomology 17:3747.Google Scholar
Kumar, A. 1985. A review of the bio-ecology of Indian dragonflies. Proceedings of the First Indian Symposium of Odonatology pp. 7392.Google Scholar
Lancaster, J. & Hildrew, A. G. 1993a. Characterizing in-stream refugia. Canadian Journal of Fisheries and Aquatic Sciences 50:16631675.CrossRefGoogle Scholar
Lancaster, J. & Hildrew, A. G. 1993b. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12:385393.Google Scholar
Leggott, M. & Pritchard, G. 1985a. The life cycle of Argia vivida Hagen: developmental types, growth ratios and instar identification (Zygoptera: Coenagrionidae). Odonatologica 14:201210.Google Scholar
Leggott, M. & Pritchard, G. 1985b. The effect of temperature on rate of egg and larval development in populations of Argia vivida Hagen (Zygoptera: Coenagrionidae) from habitats with different thermal regimes. Canadian Journal of Zoology 63:25782582.CrossRefGoogle Scholar
Mahato, M. & Edds, D. 1993. Altitudinal distribution of odonate larvae in Nepal's Gandaki River. Odonatologica 22:213221.Google Scholar
Newbold, J. D., Sweeney, B. W., Jackson, J. K. & Kaplan, L. A. 1995. Concentrations and exports of solutes from six mountain streams in northwestern Costa Rica. Journal of the North American Benthological Society 14:2137.CrossRefGoogle Scholar
Norling, U. 1982. Structure and ontogeny of the lateral abdominal gills and the caudal gills in Euphaeidae (Odonata: Zygoptera) larvae. Zoologische Jahrbücher, Anatomic und Ontogenie der Tiere 107:343389.Google Scholar
Norling, U. 1984. Life history patterns in the northern expansion of dragonflies. Advances in Odonatology 2:127156.Google Scholar
Pritchard, G. 1982. Life history strategies in dragonflies and the colonization of North America by the genus Argia (Odonata: Coenagrionidae). Advances in Odonatology 1:227241.Google Scholar
Pritchard, G. 1989. The roles of temperature and diapause in the life history of a temperate-zone dragonfly: Argia vivida (Odonata: Coenagrionidae). Ecological Entomology 14:99108.CrossRefGoogle Scholar
Pritchard, G. (ed.). 1992. Current topics in dragonfly biology, including a discussion focusing on survival during the hot dry season. Societas International Odonatologica Rapid Communications (Supplements) 15:129.Google Scholar
Sawchyn, W. W. & Church, N. S. 1973. The effects of temperature and photoperiod on diapause development in the eggs of four species of Lestes. Canadian Journal of Zoology 51:12571265.Google Scholar
Sweeney, B. W., Jackson, J. K. & Funk, D. H. 1995. Semivoltinism, seasonal emergence, and adult size variation in a tropical stream mayfly (Euthyplocia hecuba). Journal of the North American Benthological Society 14:131146.CrossRefGoogle Scholar
Williams, D. D. 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. Pp. 430455 in Resh, V. H. & Rosenberg, D. M. (ed.). The ecology of aquatic insects. Praegar, New York. 625 pp.Google Scholar
Wolda, H. 1988. Insect seasonality: Why? Annual Review of Ecology and Systematics 19:118.CrossRefGoogle Scholar